[1] N.V. Roik, L.A. Belyakova, M.O. Dziazko, Solubilization of azo dyes by cetyltrimethylammonium bromide micelles as structure control factor at synthesis of ordered mesoporous silicas, J. Mol. Liq. 328 (2021) 115451. [2] A.N. Kani, E. Dovi, F.M. Mpatani, A.A. Aryee, R.P. Han, Z.H. Li, L.B. Qu, Pollutant decontamination by polyethyleneimine-engineered agricultural waste materials: A review, Environ. Chem. Lett. 20 (1) (2022) 705-729. [3] Q.Z. Shao, Y. Li, Q. Wang, T. Niu, S. Li, W. Shen, Preparation of copper doped walnut shell-based biochar for efficiently removal of organic dyes from aqueous solutions, J. Mol. Liq. 336 (2021) 116314. [4] S.K. Kansal, R. Lamba, S.K. Mehta, A. Umar, Photocatalytic degradation of Alizarin red S using simply synthesized ZnO nanoparticles, Mater. Lett. 106 (2013) 385-389. [5] P.C. Bhomick, A. Supong, M. Baruah, C. Pongener, D. Sinha, Pine Cone biomass as an efficient precursor for the synthesis of activated biocarbon for adsorption of anionic dye from aqueous solution: Isotherm, kinetic, thermodynamic and regeneration studies, Sustain. Chem. Pharm. 10 (2018) 41-49. [6] X.L. Huang, X. Sheng, Y. Guo, Y. Sun, P. Fatehi, H. Shi, Rice straw derived adsorbent for fast and efficient phosphate elimination from aqueous solution, Ind. Crops Prod. 184 (2022) 115105. [7] E. Dovi, A.A. Aryee, J. Li, Z. Li, L. Qu, R. Han, Amine-grafted walnut shell for efficient removal of phosphate and nitrate, Environ. Sci. Pollut. Res. 29 (14) (2022) 20976-20995. [8] A.N. Kani, E. Dovi, F.M. Mpatani, Z.H. Li, R.P. Han, L.B. Qu, Tiger nut residue as a renewable adsorbent for methylene blue removal from solution: Adsorption kinetics, isotherm, and thermodynamic studies, Desalin. Water Treat. 191 (2020) 426-437. [9] J.H. Wang, X.H. Tong, S. Wang, Zirconium-modified activated sludge as a low-cost adsorbent for phosphate removal in aqueous solution, Water Air Soil Pollut. 229 (2) (2018) 1-10. [10] W.P. Xiong, J. Tong, Z. Yang, G. Zeng, Y. Zhou, D. Wang, P. Song, R. Xu, C. Zhang, M. Cheng, Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: Performance and mechanism, J. Colloid Interface Sci. 493 (2017) 17-23. [11] J.W. Huo, X.P. Min, Y. Wang, Zirconium-modified natural clays for phosphate removal: Effect of clay minerals, Environ. Res. 194 (2021) 110685. [12] M.Y. Liu, X. Zhang, Z. Li, L. Qu, R. Han, Fabrication of zirconium (IV)-loaded chitosan/Fe3O4/graphene oxide for efficient removal of alizarin red from aqueous solution, Carbohydr. Polym. 248 (2020) 116792. [13] H. Cui, Q. Li, S. Gao, J.K. Shang, Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles, J. Ind. Eng. Chem. 18 (4) (2012) 1418-1427. [14] A.A. Aryee, E. Dovi, Q.H. Guo, M.Y. Liu, R.P. Han, Z.H. Li, L.B. Qu, Selective removal of anionic dyes in single and binary system using Zirconium and iminodiacetic acid modified magnetic peanut husk, Environ. Sci. Pollut. Res. 28 (28) (2021) 37322-37337. [15] A.N. Kani, E. Dovi, A.A. Aryee, F.M. Mpatani, R.P. Han, Z.H. Li, L.B. Qu, Polyethyleneimine modified tiger nut residue for removal of Congo red from solution, Desalin. Water Treat. 215 (2021) 209-221. [16] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34 (5) (1999) 451-465. [17] C. Aharoni, M. Ungarish, Kinetics of activated chemisorption. Part 1. The non-elovichian part of the isotherm, J. Chem. Soc., Faraday Trans. 1 72 (1976) 400-408. [18] W.J. Weber Jr, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Engrg. Div. 89 (2) (1963) 31-59. [19] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (9) (1918) 1361-1403. [20] H.M.F. Freundlich, Over the adsorption in solution, J. Phys. Chem. 57 (1906) 385-471. [21] R.A. Koble, T.E. Corrigan, Adsorption isotherms for pure hydrocarbons, Ind. Eng. Chem. 44 (2) (1952) 383-387. [22] M.I. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalysts, Acta Physiochim. URSS. 12 (1940) 217-222. [23] A. El-Sayed, N. Awwad, M. Hamed, A.M.A. Hassan, S. El-Reefy, Simple and selective determination of Zr (IV) with 1,4-dichloro-2,5-dihydroxyquinone in a micellar solution of cetylpyridenium chloride by zero and second-derivative spectrophotometry, Eur. J. Anal. Chem. 12 (2) (2016) 151-165. [24] E. Dovi, A.A. Aryee, M.Y. Liu, X.T. Zhang, A.N. Kani, J.J. Li, R.P. Han, L.B. Qu, Biocomposite based on zirconium and amine-grafted walnut shell with antibacterial properties for the removal of Alizarin red in water: Batch and column studies, Environ. Sci. Pollut. Res. 29 (60) (2022) 90530-90548. [25] C. Zhang, Y. Li, F. Wang, Z. Yu, J. Wei, Z. Yang, C. Ma, Z. Li, Z. Xu, G. Zeng, Performance of magnetic zirconium-iron oxide nanoparticle in the removal of phosphate from aqueous solution, Appl. Surf. Sci. 396 (2017) 1783-1792. [26] A.A. Aryee, E. Dovi, X. Shi, R. Han, Z. Li, L. Qu, Zirconium and iminodiacetic acid modified magnetic peanut husk as a novel adsorbent for the sequestration of phosphates from solution: Characterization, equilibrium and kinetic study, Colloids Surf. A Physicochem. Eng. Aspects 615 (2021) 126260. [27] A.N. Kani, E. Dovi, A.A. Aryee, R.P. Han, L.B. Qu, Efficient removal of 2,4-D from solution using a novel antibacterial adsorbent based on tiger nut residues: Adsorption and antibacterial study, Environ. Sci. Pollut. Res. 29 (42) (2022) 64177-64191. [28] T.T.Q. Nguyen, P. Loganathan, T.V. Nguyen, S. Vigneswaran, H.H. Ngo, Iron and zirconium modified luffa fibre as an effective bioadsorbent to remove arsenic from drinking water, Chemosphere 258 (2020) 127370. [29] X.M. Dou, D. Mohan, C.U. Pittman, S. Yang, Remediating fluoride from water using hydrous zirconium oxide, Chem. Eng. J. 198-199 (2012) 236-245. [30] M. Barathi, A.S. Kumar, N. Rajesh, A novel ultrasonication method in the preparation of zirconium impregnated cellulose for effective fluoride adsorption, Ultrason. Sonochem. 21 (3) (2014) 1090-1099. [31] B.R. Poudel, R.L. Aryal, S.K. Gautam, K.N. Ghimire, H. Paudyal, M.R. Pokhrel, Effective remediation of arsenate from contaminated water by zirconium modified pomegranate peel as an anion exchanger, J. Environ. Chem. Eng. 9 (6) (2021) 106552. [32] K.K. Zhu, Y.F. Gu, R. Wang, R.P. Han, Adsorption of catechol by Zr-loaded carbon nanotubes from solution, Desalin. Water Treat. 236 (2021) 274-284. [33] A. Thøgersen, M. Syre, B. Retterstol Olaisen, S. Diplas, Studies of the oxidation states of phosphorus gettered silicon substrates using X-ray photoelectron spectroscopy and transmission electron microscopy, J. Appl. Phys. 113 (4) (2013) 044307. [34] S.N. Basahel, M. Mokhtar, E.H. Alsharaeh, T.T. Ali, H.A. Mahmoud, K. Narasimharao, Photocatalytic degradation of p-nitrophenol in aqueous suspension by using graphene/ZrO2 catalysts, Nanosci. Nanotechnol. Lett. 8 (5) (2016) 448-457. [35] P.M. Shanthi, P.J. Hanumantha, K. Ramalinga, B. Gattu, M.K. Datta, P.N. Kumta, Sulfonic acid based complex framework materials (CFM): Nanostructured polysulfide immobilization systems for rechargeable lithium-sulfur battery, J. Electrochem. Soc. 166 (10) (2019) A1827-A1835. [36] K.S. Siow, A. Rahman, A. Aminuddin, P.Y. Ng, Effect of sulfur on nitrogen-containing plasma polymers in promoting osteogenic differentiation of Wharton's Jelly mesenchymal stem cells, Sains Malays. 50 (1) (2021) 239-251. [37] A.M. Puziy, O.I. Poddubnaya, B. Gawdzik, J.M.D. Tascón, Phosphorus-containing carbons: Preparation, properties and utilization, Carbon 157 (2020) 796-846. [38] J.W. Lin, Z. Zhang, Y.H. Zhan, Effect of humic acid preloading on phosphate adsorption onto zirconium-modified zeolite, Environ. Sci. Pollut. Res. 24 (13) (2017) 12195-12211. [39] A.A. Shalaby, A.A. Mohamed, Determination of acid dissociation constants of Alizarin Red S, Methyl Orange, Bromothymol blue and Bromophenol blue using a digital camera, RSC Adv. 10 (19) (2020) 11311-11316. [40] M. Fathy, M.A. Zayed, A.M.G. Mohamed, Phosphate adsorption from aqueous solutions using novel Zn Fe/Si MCM-41 magnetic nanocomposite: Characterization and adsorption studies, Nanotechnol. Environ. Eng. 4 (1) (2019) 1-12. [41] A.I. Adeogun, R.B. Babu, One-step synthesized calcium phosphate-based material for the removal of Alizarin S dye from aqueous solutions: Isothermal, kinetics, and thermodynamics studies, Appl. Nanosci. 11 (7) (2021) 1-13. [42] R. Slimani, H. Hiyane, M.E. Haddad, S. Lazar, S.E. Antri, Y. Achour, M. Essoufy, S. Benkaddour, I.E. Ouahabi, Removal efficiency of textile dyes from aqueous solutions using calcined waste of eggshells as eco-friendly adsorbent, Chem. Biochem. Eng. Q. 35 (1) (2021) 43-56. [43] S. Pap, C. Kirk, B. Bremner, M. Turk Sekulic, L. Shearer, S.W. Gibb, M.A. Taggart, Low-cost chitosan-calcite adsorbent development for potential phosphate removal and recovery from wastewater effluent, Water Res. 173 (2020) 115573. [44] H.N. Tran, E.C. Lima, R.S. Juang, J.C. Bollinger, H.P. Chao, Thermodynamic parameters of liquid-phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: A comparison study, J. Environ. Chem. Eng. 9 (6) (2021) 106674. [45] R.D. Zhang, J. Zhang, X. Zhang, C. Dou, R. Han, Adsorption of Congo red from aqueous solutions using cationic surfactant modified wheat straw in batch mode: Kinetic and equilibrium study, J. Taiwan Inst. Chem. E. 45 (5) (2014) 2578-2583. [46] World Health Organization, Guidelines for drinking-water quality: Fourth edition incorporating the first addendum, (2017). [47] U.S. Environmental Protection Agency, Quality criteria for water 1986: Office of Water, Washington, D.C., U.S. Environmental Protection Agency Report 440/5-86-001, 2019 (1986). [48] T.T. Li, Z.H. Tong, B. Gao, Y.C. Li, A. Smyth, H.K. Bayabil, Polyethyleneimine-modified biochar for enhanced phosphate adsorption, Environ. Sci. Pollut. Res. 27 (7) (2020) 7420-7429. [49] R. Nodehi, H. Shayesteh, A. Rahbar-Kelishami, Fe3O4@NiO core-shell magnetic nanoparticle for highly efficient removal of Alizarin red S anionic dye, Int. J. Environ. Sci. Technol. 19 (4) (2022) 2899-2912. [50] W. Chananchana, P. Nuengmatcha, S. Chanthai, Role of cetyltrimethyl ammonium bromide on enhanced adsorption and removal of Alizarin red S using amino-functionalized graphene oxide, Orient. J. Chem 33 (6) (2017) 2920-2929. [51] J. Zolgharnein, M. Bagtash, N. Asanjarani, Chemometrics approach for optimization of simultaneous adsorption of Alizarin red S and Congo red by cobalt hydroxide nanoparticles, J. Chemom. 31 (5) (2017) e2886. [52] Y.P. Liu, J.J. Li, J.W. Zhu, W. Lyu, H. Xu, J.T. Feng, W. Yan, The adsorption property and mechanism of phenyl/amine end-capped tetraaniline for Alizarin red S, Colloid Polym. Sci. 296 (11) (2018) 1777-1786. [53] M.A. Khapre, R.M. Jugade, Hierarchical approach towards adsorptive removal of Alizarin red S dye using native chitosan and its successively modified versions, Water Sci. Technol. 82 (4) (2020) 715-731. [54] K. Rathinam, X. Kou, R. Hobby, S. Panglisch, Sustainable development of magnetic chitosan core-shell network for the removal of organic dyes from aqueous solutions, Mater. Basel Switz. 14 (24) (2021) 7701. [55] N. Limchoowong, P. Sricharoen, S. Chanthai, A novel bead synthesis of the Chiron-sodium dodecyl sulfate hydrogel and its kinetics-thermodynamics study of superb adsorption of Alizarin red S from aqueous solution, J. Polym. Res. 26 (12) (2019) 1-11. [56] G.R. Delpiano, D. Tocco, L. Medda, E. Magner, A. Salis, Adsorption of malachite green and Alizarin red S dyes using Fe-BTC metal organic framework as adsorbent, Int. J. Mol. Sci. 22 (2) (2021) 788. [57] B. Wanassi, I.B. Hariz, C.M. Ghimbeu, C. Vaulot, M. Jeguirim, Green carbon composite-derived polymer resin and waste cotton fibers for the removal of Alizarin red S dye, Energies 10 (9) (2017) 1321. [58] J.J. Zhang, J.H. Zhang, M.M. Yang, R.P. Han, Efficient sequestration of Alizarin red from solution using a novel adsorbent based on zirconium and diethylenetriamine functionalized wheat straw, Desalin. Water Treat. 235 (2021) 283-299. [59] Q. Liu, Q.Z. Liu, Z.T. Wu, Y. Wu, T.T. Gao, J.S. Yao, Efficient removal of methyl orange and Alizarin red S from pH-unregulated aqueous solution by the catechol-amine resin composite using hydrocellulose as precursor, ACS Sustain. Chem. Eng. 5 (2) (2017) 1871-1880. [60] K.Y. Wu, J.G. Yu, X.Y. Jiang, Multi-walled carbon nanotubes modified by polyaniline for the removal of Alizarin yellow R from aqueous solutions, Adsorpt. Sci. Technol. 36 (1-2) (2018) 198-214. [61] E. Nasoudari, M. Ameri, M. Shams, V. Ghavami, Z. Bonyadi, The biosorption of Alizarin red S by Spirulina platensis; Process modelling, optimisation, kinetic and isotherm studies, Int. J. Environ. Anal. Chem. (2021) 1-15. [62] N. Ali, F. Ali, I. Ullah, Z. Ali, L. Duclaux, L. Reinert, J.M. Lévêque, A. Farooq, M. Bilal, I. Ahmad, Organically modified micron-sized vermiculite and silica for efficient removal of Alizarin red S dye pollutant from aqueous solution, Environ. Technol. Innov. 19 (2020) 101001. [63] Y.D. Liang, Y. He, Y. Zhang, Q. Zhu, Adsorption property of Alizarin red S by NiFe2O4/polyaniline magnetic composite, J. Environ. Chem. Eng. 6 (1) (2018) 416-425. [64] Z.R. Zhang, H.Q. Yu, R.X. Zhu, X. Zhang, L.G. Yan, Phosphate adsorption performance and mechanisms by nanoporous biochar-iron oxides from aqueous solutions, Environ. Sci. Pollut. Res. 27 (22) (2020) 28132-28145. [65] J. Ye, X.N. Cong, P.Y. Zhang, E. Hoffmann, G.M. Zeng, Y. Wu, H.B. Zhang, W. Fan, Phosphate adsorption onto granular-acid-activated-neutralized red mud: Parameter optimization, kinetics, isotherms, and mechanism analysis, Water Air Soil Pollut. 226 (9) (2015) 1-10. [66] H. Miyauchi, T. Yamamoto, R. Chitrakar, Y. Makita, Z.M. Wang, K.W. Jun, T. Hirotsu, Phosphate adsorption site on zirconium ion modified MgAl-layered double hydroxides, Top. Catal. 52 (6-7) (2009) 714-723. [67] J.M. Li, X.Y. Fang, M. Yang, W. Tan, H.C. Zhang, Y.Y. Zhang, G.Z. Li, H.B. Wang, The adsorption properties of functionalization vetiver grass-based activated carbon: The simultaneous adsorption of phosphate and nitrate, Environ. Sci. Pollut. Res. 28 (30) (2021) 40544-40554. [68] W.Y. Huang, J. Chen, F. He, J. Tang, D. Li, Y. Zhu, Y. Zhang, Effective phosphate adsorption by Zr/Al-pillared montmorillonite: Insight into equilibrium, kinetics and thermodynamics, Appl. Clay Sci. 104 (2015) 252-260. [69] Z.X. Shang, Y. Wang, S. Wang, F. Jin, Z. Hu, Enhanced phosphorus removal of constructed wetland modified with novel lanthanum-ammonia-modified hydrothermal biochar: Performance and mechanism, Chem. Eng. J. 449 (2022) 137818. [70] Z.C. Lan, Y. Lin, C. Yang, Lanthanum-iron incorporated chitosan beads for adsorption of phosphate and cadmium from aqueous solutions, Chem. Eng. J. 448 (2022) 137519. [71] J. Ren, N. Li, L. Zhao, N.Q. Ren, Enhanced adsorption of phosphate by loading nanosized ferric oxyhydroxide on anion resin, Front. Environ. Sci. Eng. 8 (4) (2014) 531-538. [72] W.M. Shi, Y. Fu, W. Jiang, Y. Ye, J. Kang, D. Liu, Y. Ren, D. Li, C. Luo, Z. Xu, Enhanced phosphate removal by zeolite loaded with Mg-Al-La ternary (hydr)oxides from aqueous solutions: Performance and mechanism, Chem. Eng. J. 357 (2019) 33-44. [73] S.X. Yang, Q. Wang, H. Zhao, D. Liu, Bottom-up synthesis of MOF-derived magnetic Fe-Ce bimetal oxide with ultrahigh phosphate adsorption performance, Chem. Eng. J. 448 (2022) 137627. |