[1] C. H. Lu, S. W. Lin, Influence of the particle size on the electrochemical properties of lithium Manganese oxide, J. Power Sources 97-98 (2001) 458-460. [2] S.R. Sivakkumar, J.Y. Nerkar, A.G.Pandolfo, Rate capability of graphite materials as negative electrodes in lithium-ion capacitors, Electrochimica Acta 55 (9) (2010) 3330-3335. [3] T.F. Fuller, M. Doyle, J.Newman, Simulation and optimization of the dual lithium ion insertion cell, J. Electrochem. Soc. 141 (1) (1994) 1-10. [4] Daniel, Westhoff, Generation of virtual lithium-ion battery electrode microstructures based on spatial stochastic modeling, Comput. Mater. Sci. 151 (2018) 53-64. [5] D.E. Stephenson, B.C. Walker, C.B. Skelton, E.P. Gorzkowski, D.J. Rowenhorst, D.R.Wheeler, Modeling 3D microstructure and ion transport in porous Li-ion battery electrodes, J. Electrochem. Soc. 158 (7) (2011) A781. [6] M.R. Wang, N.Pan, Numerical analyses of effective dielectric constant of multiphase microporous media, J. Appl. Phys. 101 (11) (2007) 114102. [7] Wenyu, Mu, Numerical simulation of the factors affecting the growth of lithium dendrites, J. Energy Storage 26 (2019) 100921. [8] Z. Y. Jiang, Z. G. Qu, L. Zhou, Lattice Boltzmann simulation of ion and electron transport during the discharge process in a randomly reconstructed porous electrode of a lithium-ion battery, Int. J. Heat Mass Transf. 123 (2018) 500-513. [9] M. Smith, R.E. García, Q.C.Horn, The effect of microstructure on the galvanostatic discharge of graphite anode electrodes in LiCoO2-based rocking-chair rechargeable batteries, J. Electrochem. Soc. 156 (11) (2009) A896. [10] O.O. Taiwo, D.P. Finegan, D.S. Eastwood, J.L. Fife, L.D. Brown, J.A. Darr, P.D. Lee, D.J.L. Brett, P.R. Shearing, Comparison of three-dimensional analysis and stereological techniques for quantifying lithium-ion battery electrode microstructures, J. Microsc. 263 (3) (2016) 280-292. [11] P. Van der Weeën, J.M. Baetens, B. De Baets, Design and parameterization of a stochastic cellular automaton describing a chemical reaction, J. Comput. Chem. 32 (9) (2011) 1952-1961. [12] J.D. Dai, C. Zhai, J.L. Ai, J.Y. Ma, J.D. Wang, W.Sun, Modeling the spread of epidemics based on cellular automata, Processes 9 (1) (2020) 55. [13] Xueyu, Chen, Stochastic modeling of controlled-drug release, Biochem. Eng. J. 2 (3) (1998) 161-177. [14] N.H. Packard, S. Wolfram, Two-dimensional cellular automata, J. Stat. Phys.38 (5-6) (1985) 901-946. [15] E. Hernández Zubeldia, L.C. de S.M. Ozelim, A. Luís Brasil Cavalcante, S. Crestana, Cellular automata and X-ray microcomputed tomography images for generating artificial porous media, Int. J. Geomech. 16(2) (2016) 04015057. [16] O. Bandman, Using cellular automata for porous media simulation, J. Supercomput.57 (2) (2011) 121-131. [17] O.L.Bandman, Comparative study of cellular-automata diffusion models. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999: 395-409. [18] T. Toffoli, N. Margolus, Cellular automata machines: a new environment for modeling/Tommaso Toffoli, Norman Margolus, MIT Press, Cambridge,1987. [19] O.L.Bandman, A cellular automata convection-diffusion model of flows through porous media, Optoelectron.Instrument.Proc. 43 (6) (2007) 524-529. [20] P. Gurikov, A. Kolnoochenko, M. Golubchikov, N. Menshutina, I.Smirnova, A synchronous cellular automaton model of mass transport in porous media, Comput. Chem. Eng. 84 (2016) 446-457. [21] T. Gao, Z.W. Qian, H.B. Chen, R. Shahbazian-Yassar, I.Nakamura, Inhibition of lithium dendrite growth with highly concentrated ions: cellular automaton simulation and surrogate model with ensemble neural networks, Mol. Syst. Des. Eng. 7 (3) (2022) 260-272. [22] O. Ziaee, N. Zolfaghari, M. Baghani, M.Baniassadi, Simulating favorable adsorption in lithium-ion batteries using a novel cellular-automaton-based method, Phys. Scr. 96 (12) (2021) 125841. [23] C.F. Pérez-Brokate, D. di Caprio, É. Mahé, D. Féron, J.de Lamare, Cyclic voltammetry simulations with cellular automata, J. Comput. Sci. 11 (2015) 269-278. [24] L.C. de Sena Monteiro Ozelim, A. Luís Brasil Cavalcante, L. Parreira de Faria Borges, Continuum versus discrete: A physically interpretable general rule for cellular automata by means of modular arithmetic, arXiv preprint (2012) arXiv:1206.2556. [25] D.P. Finegan, A. Vamvakeros, C. Tan, T.M.M. Heenan, S.R. Daemi, N. Seitzman, M. Di Michiel, S. Jacques, A.M. Beate, D.J.L. Brett, P.R. Shearing, K. Smith, Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium ion electrodes, Nat. Commun. 11 (1) (2020) 631. [26] D.P. Finegan, A. Vamvakeros, C. Tan, T.M.M. Heenan, S.R. Daemi, N. Seitzman, M. Di Michiel, S. Jacques, A.M. Beale, D.J.L. Brett, P.R. Shearing, K.Smith, Spatial quantification of dynamic inter and intra particle crystallographic heterogeneities within lithium ion electrodes, Nat. Commun. 11 (2020) 631. [27] D.P. Finegan, A. Vamvakeros, L. Cao, C. Tan, T.M.M. Heenan, S.R. Daemi, S.D.M. Jacques, A.M. Beale, M. Di Michiel, K. Smith, D.J.L. Brett, P.R. Shearing, C.M.Ban, Spatially resolving lithiation in silicon-graphite composite electrodes via in situ high-energy X-ray diffraction computed tomography, Nano Lett. 19 (6) (2019) 3811-3820. [28] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L.Dempsey, A practical beginner’s guide to cyclic voltammetry, J. Chem. Educ. 95 (2) (2018) 197-206. [29] V.R. Subramanian, V.D. Diwakar, D.Tapriyal, Efficient macro-micro scale coupled modeling of batteries, J. Electrochem. Soc. 152 (10) (2005) A2002. [30] T.R. Tanim, C.D. Rahn, C.Y.Wang, A temperature dependent, single particle, lithium ion cell model including electrolyte diffusion, J. Dyn. Syst. Meas. Control 137 (1) (2015) 011005. [31] Qian, Lin, Towards a smarter battery management system: a critical review on optimal charging methods of lithium ion batteries, Energy 183 (2019) 220-234. |