[1] R.J. Leggett, N.J. Cooke, L. Clancy, A.G. Leitch, B.J. Kirby, D.C. Flenley, Long-term domiciliary oxygen therapy in cor pulmonale complicating chronic bronchitis and emphysema, Thorax 31 (4) (1976) 414-418 [2] J.B. Cabello, A. Burls, J.I. Emparanza, Oxygen therapy for acute myocardial infarction, Cochrane Database of Systematic Reviews, 128 (6) (2010) 641-643 [3] D.M. Ruthven, S. Farooq, Air separation by pressure swing adsorption, Gas Sep. Purif. 4 (3) (1990) 141-148 [4] S. Farooq, D.M. Ruthven, H.A. Boniface, Numerical simulation of a pressure swing adsorption oxygen unit, Chem. Eng. Sci. 44 (12) (1989) 2809-2816 [5] C.W. Skarstrom, Oxygen concentration process, US Pat. US3237377A (1966). [6] C. Chou, W.C. Huang, Simulation of a four-bed pressure swing adsorption process for oxygen enrichment, Ind. Eng. Chem. Res. 33 (5) (1994) 1250-1258 [7] C. Chou, W.C. Huang, Simulation of a four-bed pressure swing adsorption process for oxygen enrichment, Ind. Eng. Chem. Res. 33 (5) (1994) 1250-1258 [8] R. Haghpanah, A. Majumder, R. Nilam, A. Rajendran, S. Farooq, I.A. Karimi, M. Amanullah, Multiobjective optimization of a four-step adsorption process for postcombustion CO2 capture via finite volume simulation, Ind. Eng. Chem. Res. 52 (11) (2013) 4249-4265 [9] S.I. Yang, J.Y. Park, D.K. Choi, S.H. Kim, Effects of the residence time in four-bed pressure swing adsorption process, Sep. Sci. Technol. 44 (5) (2009) 1023-1044 [10] M. Suzuki, J.M. Smith, Axial dispersion in beds of small particles, Chem. Eng. J. 3 (1972) 256-264 [11] J.A. Moulijn, W.P.M. van Swaaij, The correlation of axial dispersion data for beds of small particles, Chem. Eng. Sci. 31 (9) (1976) 845-847 [12] T. Miyauchi, T. Kikuchi, Axial dispersion in packed beds, Chem. Eng. Sci. 30 (3) (1975) 343-348 [13] A.H. Benneker, A.E. Kronberg, J.W. Post, A.G.J. van der Ham, K.R. Westerterp, Axial dispersion in gases flowing through a packed bed at elevated pressures, Chem. Eng. Sci. 51 (10) (1996) 2099-2108 [14] L.K.P. Hsu, H.W. Haynes, Effective diffusivity by the gas chromatography technique:Analysis and application to measurements of diffusion of various hydrocarbons in zeolite NaY, AIChE J. 27 (1) (1981) 81-91 [15] E. Alpay, D.M. Scott, The linear driving force model for fast-cycle adsorption and desorption in a spherical particle, Chem. Eng. Sci. 47 (2) (1992) 499-502 [16] M.A. Buzanowski, R.T. Yang, O.W. Haas, Direct observation of the effects of bed pressure drop on adsorption and desorption dynamics, Chem. Eng. Sci. 44 (10) (1989) 2392-2394 [17] F.G. Helfferich, Principles of adsorption & adsorption processes by D. M. Ruthven, John Wiley & Sons, Aiche Journal, 31(3) (1985)523-524 [18] R.T. Yang, S.J. Doong, Gas separation by pressure swing adsorption:A pore-diffusion model for bulk separation, Aiche J. 31 (11) (1985) 1829-1842 [19] K.G. Teague, T.F. Edgar, Predictive dynamic model of a small pressure swing adsorption air separation unit, Ind. Eng. Chem. Res. 38 (10) (1999) 3761-3775 [20] J.S. Ahari, S. Pakseresht, Determination of effects of process variables on nitrogen production PSA system by mathematical modelling, Petroleum Coal 50 (2) (2008) 52-59 [21] J.S. Ahari, S. Pakseresht, M. Mahdyarfar, S. Shokri, Y. Zamani, A.N. Pour, F. Naderi, Predictive dynamic model of air separation by pressure swing adsorption, Chem. Eng. Technol. 29 (1) (2006) 50-58 [22] J.C. Santos, A.F. Portugal, F.D. Magalhães, A. Mendes, Simulation and optimization of small oxygen pressure swing adsorption units, Ind. Eng. Chem. Res. 43 (26) (2004) 8328-8338 [23] M. Yavary, H.A. Ebrahim, C. Falamaki, The effect of number of pressure equalization steps on the performance of pressure swing adsorption process, Chem. Eng. Process.:Process. Intensif. 87 (2015) 35-44 [24] M. Yavary, H. Ale-Ebrahim, C. Falamaki, The effect of reliable prediction of final pressure during pressure equalization steps on the performance of PSA cycles, Chem. Eng. Sci. 66 (12) (2011) 2587-2595 [25] A. Shukla, S. Sahoo, A.S. Moharir, Non-isothermal Multi-cell Model for pressure swing adsorption process, Int. J. Hydrog. Energy 42 (8) (2017) 5150-5167 [26] H.R. Li, Z.W. Liao, J.Y. Sun, B.B. Jiang, J.D. Wang, Y.R. Yang, Modelling and simulation of two-bed PSA process for separating H2 from methane steam reforming, Chin. J. Chem. Eng. 27 (8) (2019) 1870-1878 [27] H.R. Li, Z.W. Liao, J.Y. Sun, B.B. Jiang, J.D. Wang, Y.R. Yang, Simultaneous design of hydrogen allocation networks and PSA inside refineries, Ind. Eng. Chem. Res. 59 (10) (2020) 4712-4720 [28] T.B. Wu, Z.Y. Niu, L. Feng, X.X. Yu, B. Liu, D.H. Zhang, Performance analysis of VPSA process for separating N2O from adipic acid tail gas, Sep. Purif. Technol. 256 (2021) 117750 [29] Z.B. Guan, Y.Y. Wang, X.X. Yu, Y.H. Shen, D.R. He, Z.L. Tang, W.B. Li, D.H. Zhang, Simulation and analysis of dual-reflux pressure swing adsorption using silica gel for blue coal gas initial separation, Int. J. Hydrog. Energy 46 (1) (2021) 683-696 [30] B. Liu, X.X. Yu, W.R. Shi, Y.H. Shen, D.H. Zhang, Z.L. Tang, Two-stage VSA/PSA for capturing carbon dioxide (CO2) and producing hydrogen (H2) from steam-methane reforming gas, Int. J. Hydrog. Energy 45 (46) (2020) 24870-24882 [31] N.D. Vo, D.H. Oh, S.H. Hong, M. Oh, C.H. Lee, Combined approach using mathematical modelling and artificial neural network for chemical industries:Steam methane reformer, Appl. Energy 255 (2019) 113809 [32] M. Mofarahi, J. Towfighi, L. Fathi, Oxygen separation from air by four-bed pressure swing adsorption, Ind. Eng. Chem. Res. 48 (11) (2009) 5439-5444 [33] J.A. Ritter, F. Wu, A.D. Ebner, New approach for modeling hybrid pressure swing adsorption-distillation processes, Ind. Eng. Chem. Res. 51 (27) (2012) 9343-9355 [34] T.S. Bhatt, G. Storti, R. Rota, Detailed simulation of dual-reflux pressure swing adsorption process, Chem. Eng. Sci. 122 (2015) 34-52 [35] G.M. Nam, B.M. Jeong, S.H. Kang, B.K. Lee, D.K. Choi, Equilibrium isotherms of CH4, C2H6, C2H4, N2, and H2 on zeolite 5A using a static volumetric method, J. Chem. Eng. Data 50 (1) (2005) 72-76 [36] D.D. Li, Y. Zhou, Y.H. Shen, W.N. Sun, Q. Fu, H.Y. Yan, D.H. Zhang, Experiment and simulation for separating CO2/N2 by dual-reflux pressure swing adsorption process, Chem. Eng. J. 297 (2016) 315-324 |