[1] L. An, D. Petit, M. di Luigi, A. Sheng, Y.L. Huang, Y. Hu, Z. Li, S.Q. Ren, Reflective paint consisting of mesoporous silica aerogel and titania nanoparticles for thermal management, ACS Appl. Nano Mater. 4 (6) (2021) 6357-6363 [2] Y. Bai, H. Sui, X.Y. Liu, L. He, X.G. Li, E. Thormann, Effects of the N, O, and S heteroatoms on the adsorption and desorption of asphaltenes on silica surface:A molecular dynamics simulation, Fuel 240 (2019) 252-261 [3] A. Hanifpour, N. Bahri-Laleh, S.A. Mirmohammadi, Silica-grafted poly1-hexene:A new approach to prepare polyethylene/silica nanocomposites, Polym. Compos. 40 (3) (2019) 1053-1060 [4] M. Manzano, M. Vallet-Regí, Mesoporous silica nanoparticles for drug delivery, Adv. Funct. Mater. 30 (2) (2020) 1902634 [5] S. Rostamnia, B. Gholipour, X. Liu, Y. Wang, H. Arandiyan, NH2-coordinately immobilized tris(8-quinolinolato)iron onto the silica coated magnetite nanoparticle:Fe3O4@SiO2-FeQ3 as a selective Fenton-like catalyst for clean oxidation of sulfides, J. Colloid Interface Sci. 511 (2018) 447-455 [6] K. Searles, K.W. Chan, J.A. Mendes Burak, D. Zemlyanov, O. Safonova, C. Copéret, Highly productive propane dehydrogenation catalyst using silica-supported Ga-Pt nanoparticles generated from single-sites, J. Am. Chem. Soc. 140 (37) (2018) 11674-11679 [7] C. Sun, S. Wen, H. Ma, Y. Li, L. Chen, Z. Wang, B. Yuan, L. Liu, Improvement of Silica Dispersion in Solution Polymerized Styrene-Butadiene Rubber via Introducing Amino Functional Groups, Industrial & Engineering Chemistry Research, 58 (2019) 1454-1461 [8] J.C. Zheng, D.L. Han, S.H. Zhao, X. Ye, Y.Q. Wang, Y.P. Wu, D. Dong, J. Liu, X.H. Wu, L.Q. Zhang, Constructing a multiple covalent interface and isolating a dispersed structure in silica/rubber nanocomposites with excellent dynamic performance, ACS Appl. Mater. Interfaces 10 (23) (2018) 19922-19931 [9] D.V. Quang, J.K. Kim, J.K. Park, S.H. Park, G. Elineema, P.B. Sarawade, H.T. Kim, Effect of the gelation on the properties of precipitated silica powder produced by acidizing sodium silicate solution at the pilot scale, Chem. Eng. J. 209 (2012) 531-536 [10] T. Jesionowski, A. Krysztafkiewicz, Influence of silane coupling agents on surface properties of precipitated silicas, Appl. Surf. Sci. 172 (1-2) (2001) 18-32 [11] T. Jesionowski, J. Zurawska, A. Krysztafkiewicz, Surface properties and dispersion behaviour of precipitated silicas, Journal of Materials Science, 37 (2002) 1621-1633 [12] T. Zhang, Y.J. Wang, G.S. Luo, S.Q. Bai, Effects of precipitation and drying processes on the synthesis of silica materials with a large-pore-volume and narrow-pore-diameter distribution, Ind. Eng. Chem. Res. 55 (12) (2016) 3579-3587 [13] S.G. Kwon, T. Hyeon, Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods, Small 7 (19) (2011) 2685-2702 [14] M. Rusyniak, V. Abdelsayed, J. Campbell, M.S. El-Shall, Vapor phase homogeneous nucleation of higher alkanes:Dodecane, hexadecane, and octadecane. 1. critical supersaturation and nucleation rate measurements, J. Phys. Chem. B 105 (47) (2001) 11866-11872 [15] V.K. LaMer, R.H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc. 72 (11) (1950) 4847-4854 [16] P.W. Voorhees, The theory of Ostwald ripening, J. Stat. Phys. 38 (1-2) (1985) 231-252 [17] M.A. Watzky, R.G. Finke, Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant:Slow, continuous nucleation and fast autocatalytic surface growth, J. Am. Chem. Soc. 119 (43) (1997) 10382-10400 [18] F.A.L. Janssen, M. Kather, A. Ksiazkiewicz, A. Pich, A. Mitsos, Synthesis of poly(N-vinylcaprolactam)-based microgels by precipitation polymerization:Pseudo-bulk model for particle growth and size distribution, ACS Omega 4 (9) (2019) 13795-13807 [19] S. Yan, Z.H. Wu, H.Y. Yu, Y. Gong, Y.Y. Tan, R. Du, W. Chen, X.Q. Xing, G. Mo, Z.J. Chen, Q. Cai, D.B. Sun, Time-resolved small-angle X-ray scattering study on the growth behavior of silver nanoparticles, J. Phys. Chem. C 118 (21) (2014) 11454-11463 [20] S. Fouilloux, O. Taché, O. Spalla, A. Thill, Nucleation of silica nanoparticles measured in situ during controlled supersaturation increase. Restructuring toward a monodisperse nonspherical shape, Langmuir 27 (20) (2011) 12304-12311 [21] Y.D. Han, Z.Y. Lu, Z.G. Teng, J.L. Liang, Z.L. Guo, D.Y. Wang, M.Y. Han, W.S. Yang, Unraveling the growth mechanism of silica particles in the stöber method:In situ seeded growth model, Langmuir 33 (23) (2017) 5879-5890 [22] D.J. Tobler, S. Shaw, L.G. Benning, Quantification of initial steps of nucleation and growth of silica nanoparticles:An in situ SAXS and DLS study, Geochimica Cosmochimica Acta 73 (18) (2009) 5377-5393 [23] A. Seyfaee, F. Neville, R. Moreno-Atanasio, Experimental results and theoretical modeling of the growth kinetics of polyamine-derived silica particles, Ind. Eng. Chem. Res. 54 (9) (2015) 2466-2475 [24] Y.B. Liu, T. Pelster, T.T. Lee, Y.J. Wang, G.S. Luo, Study on the three-stage growth of silica nanoparticles prepared by the drop-by-drop precipitation method, Powder Technol. 397 (2022) 117115 [25] D. Kashchiev, G.M. van Rosmalen, Review:Nucleation in solutions revisited, Cryst. Res. Technol. 38 (7-8) (2003) 555-574 [26] I. Gunnarsson, S. Arnórsson, Amorphous silica solubility and the thermodynamic properties of H4SiO4 in the range of 0° to 350℃ at Psat, Geochimica Cosmochimica Acta 64 (13) (2000) 2295-2307 [27] G. Kaptay, The Gibbs equation versus the Kelvin and the Gibbs-Thomson equations to describe nucleation and equilibrium of nano-materials, J. Nanosci. Nanotechnol. 12 (3) (2012) 2625-2633 [28] M. Perez, Gibbs-Thomson effects in phase transformations, Scr. Mater. 52 (8) (2005) 709-712 [29] T. Matsoukas, E. Gulari, Monomer-addition growth with a slow initiation step:A growth model for silica particles from alkoxides, J. Colloid Interface Sci. 132 (1) (1989) 13-21 |