[1] T.R. Wang, Wusigale, D. Kuttappan, M.A. Amalaradjou, Y.G. Luo, Y.C. Luo, Polydopamine-coated chitosan hydrogel beads for synthesis and immobilization of silver nanoparticles to simultaneously enhance antimicrobial activity and adsorption kinetics, Adv. Compos. Hybrid Mater. 4 (3) (2021) 696-706. 10.1007/s42114-021-00305-1 [2] S. Kordjazi, K. Kamyab, N. Hemmatinejad, Super-hydrophilic/oleophobic chitosan/acrylamide hydrogel:An efficient water/oil separation filter, Adv. Compos. Hybrid Mater. 3 (2) (2020) 167-176. 10.1007/s42114-020-00150-8 [3] H.L. Huang, L. Han, Y.L. Wang, Z.L. Yang, F. Zhu, M. Xu, Tunable thermal-response shape memory bio-polymer hydrogels as body motion sensors, Eng. Sci. 9 (2020):60-67.https://doi.org/10.30919/es8d812 [4] J. Hua, M. Björling, R. Larsson, Y.J. Shi, Friction control of chitosan-Ag hydrogel by silver ion, ES Mater. Manuf. 16 (2022):30-36.https://doi.org/10.30919/esmm5f555 [5] Y. Zhang, S. Xie, D. Zhang, B. Ren, Y. Liu, L. Tang, Q. Chen, J. Yang, J. Wu, J. Tang, J. Zheng, Thermo-responsive and shape-adaptive hydrogel actuators from fundamentals to applications, Eng. Sci. 6 (2019) 1-11 [6] W.W. Zhao, L.J. Chen, S.M. Hu, Z.J. Shi, X. Gao, V.V. Silberschmidt, Printed hydrogel nanocomposites:Fine-tuning nanostructure for anisotropic mechanical and conductive properties, Adv. Compos. Hybrid Mater. 3 (3) (2020) 315-324. 10.1007/s42114-020-00161-5 [7] K. Huang, Y.F. Wu, J.C. Liu, G. Chang, X.C. Pan, X.D. Weng, Y.G. Wang, M. Lei, A double-layer CNTs/PVA hydrogel with high stretchability and compressibility for human motion detection, Eng. Sci. 17 (2022):319-327.https://doi.org/10.30919/es8d625 [8] Y.Y. Yang, W.B. Li, D.G. Yu, G.H. Wang, G.R. Williams, Z. Zhang, Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning, Carbohydr. Polym. 203 (2019) 228-237.https://pubmed.ncbi.nlm.nih.gov/30318208/ [9] M. Sharifi, S.M. Robatjazi, M. Sadri, J.M. Mosaabadi, Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies:Characterization and stability studies, Chin. J. Chem. Eng. 27 (1) (2019) 191-199. 10.1016/j.cjche.2018.03.023 [10] F.H. Isikgor, C.R. Becer, Lignocellulosic biomass:A sustainable platform for the production of bio-based chemicals and polymers, Polym. Chem. 6 (25) (2015) 4497-4559. 10.1039/c5py00263j [11] H. Kargarzadeh, M. Mariano, D. Gopakumar, I. Ahmad, S. Thomas, A. Dufresne, J. Huang, N. Lin, Advances in cellulose nanomaterials, Cellulose 25 (4) (2018) 2151-2189. 10.1007/s10570-018-1723-5 [12] D. Pan, J.W. Dong, G. Yang, F.M. Su, B.B. Chang, C.T. Liu, Y.C. Zhu, Z.H. Guo, Ice template method assists in obtaining carbonized cellulose/boron nitride aerogel with 3D spatial network structure to enhance the thermal conductivity and flame retardancy of epoxy-based composites, Adv. Compos. Hybrid Mater. 5 (1) (2022) 58-70. 10.1007/s42114-021-00362-6 [13] A. Fatima, S. Yasir, M. Ul-Islam, T. Kamal, M.W. Ahmad, Y. Abbas, S. Manan, M.W. Ullah, G. Yang, Ex situ development and characterization of green antibacterial bacterial cellulose-based composites for potential biomedical applications, Adv. Compos. Hybrid Mater. 5 (1) (2022) 307-321. 10.1007/s42114-021-00369-z [14] H.B. Gu, C. Gao, X.M. Zhou, A. Du, N. Naik, Z.H. Guo, Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption, Adv. Compos. Hybrid Mater. 4 (3) (2021) 459-468. 10.1007/s42114-021-00289-y [15] M. Zhang, H.S. Du, K. Liu, S.X. Nie, T. Xu, X.Y. Zhang, C.L. Si, Fabrication and applications of cellulose-based nanogenerators, Adv. Compos. Hybrid Mater. 4 (4) (2021) 865-884. 10.1007/s42114-021-00312-2 [16] L.D. Xiao, H.J. Qi, K.Q. Qu, C. Shi, Y. Cheng, Z. Sun, B.N. Yuan, Z.H. Huang, D. Pan, Z.H. Guo, Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes, Adv. Compos. Hybrid Mater. 4 (2) (2021) 306-316. 10.1007/s42114-021-00223-2 [17] K.Q. Qu, Z. Sun, C. Shi, W.C. Wang, L.D. Xiao, J.Y. Tian, Z.H. Huang, Z.H. Guo, Dual-acting cellulose nanocomposites filled with carbon nanotubes and zeolitic imidazolate framework-67 (ZIF-67)-derived polyhedral porous Co3O4 for symmetric supercapacitors, Adv. Compos. Hybrid Mater. 4 (3) (2021) 670-683. 10.1007/s42114-021-00293-2 [18] Z.H. Guo, A.R. Li, Z.H. Sun, Z.Q. Yan, H.S. Liu, L. Qian, Negative permittivity behavior in microwave frequency from cellulose-derived carbon nanofibers, Adv. Compos. Hybrid Mater. 5 (1) (2022) 50-57. 10.1007/s42114-021-00314-0 [19] M. Ghorbani, L. Roshangar, J. Soleimani Rad, Development of reinforced chitosan/pectin scaffold by using the cellulose nanocrystals as nanofillers:An injectable hydrogel for tissue engineering, Eur. Polym. J. 130 (2020) 109697. 10.1016/j.eurpolymj.2020.109697 [20] M. Talantikite, N. Beury, C. Moreau, B. Cathala, Arabinoxylan/cellulose nanocrystal hydrogels with tunable mechanical properties, Langmuir 35 (41) (2019) 13427-13434. 10.1021/acs.langmuir.9b02080 [21] H.S. Du, W. Liu, M.M. Zhang, C.L. Si, X.Y. Zhang, B. Li, Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications, Carbohydr. Polym. 209 (2019) 130-144.https://pubmed.ncbi.nlm.nih.gov/30732792/ [22] M.S. Islam, N. Kao, S.N. Bhattacharya, R. Gupta, H.J. Choi, Potential aspect of rice husk biomass in Australia for nanocrystalline cellulose production, Chin. J. Chem. Eng. 26 (3) (2018) 465-476. 10.1016/j.cjche.2017.07.004 [23] D. Trache, M.H. Hussin, M.K. Haafiz, V.K. Thakur, Recent progress in cellulose nanocrystals:Sources and production, Nanoscale 9 (5) (2017) 1763-1786.https://pubmed.ncbi.nlm.nih.gov/28116390/ [24] R.M.A. Domingues, M. Silva, P. Gershovich, S. Betta, P. Babo, S.G. Caridade, J.F. Mano, A. Motta, R.L. Reis, M.E. Gomes, Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications, Bioconjug. Chem. 26 (8) (2015) 1571-1581.https://pubmed.ncbi.nlm.nih.gov/26106949/ [25] R. Shinoda, T. Saito, Y. Okita, A. Isogai, Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils, Biomacromolecules 13 (3) (2012) 842-849.https://pubmed.ncbi.nlm.nih.gov/22276990/ [26] S.J. Ling, W.S. Chen, Y.M. Fan, K. Zheng, K. Jin, H.P. Yu, M.J. Buehler, D.L. Kaplan, Biopolymer nanofibrils:Structure, modeling, preparation, and applications, Prog. Polym. Sci. 85 (2018) 1-56. 10.1016/j.progpolymsci.2018.06.004 [27] F. Rol, M.N. Belgacem, A. Gandini, J. Bras, Recent advances in surface-modified cellulose nanofibrils, Prog. Polym. Sci. 88 (2019) 241-264. 10.1016/j.progpolymsci.2018.09.002 [28] O.Y. Alothman, L.K. Kian, N. Saba, M. Jawaid, R. Khiari, Cellulose nanocrystal extracted from date palm fibre:Morphological, structural and thermal properties, Ind. Crops Prod. 159 (2021) 113075. 10.1016/j.indcrop.2020.113075 [29] T. Saito, Y. Nishiyama, J.L. Putaux, M. Vignon, A. Isogai, Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose, Biomacromolecules 7 (6) (2006) 1687-1691.https://pubmed.ncbi.nlm.nih.gov/16768384/ [30] Y. Noguchi, I. Homma, Y. Matsubara, Complete nanofibrillation of cellulose prepared by phosphorylation, Cellulose 24 (3) (2017) 1295-1305. 10.1007/s10570-017-1191-3 [31] K. Numata, S. Yamazaki, T. Katashima, J.A. Chuah, N. Naga, T. Sakai, Silk-pectin hydrogel with superior mechanical properties, biodegradability, and biocompatibility, Macromol. Biosci. 14 (6) (2014) 799-806.https://pubmed.ncbi.nlm.nih.gov/24610718/ [32] K. Sahlin, L. Forsgren, T. Moberg, D. Bernin, M. Rigdahl, G. Westman, Surface treatment of cellulose nanocrystals (CNC):Effects on dispersion rheology, Cellulose 25 (1) (2018) 331-345. 10.1007/s10570-017-1582-5 [33] G. Chen, B. Zhang, J. Zhao, H.W. Chen, Improved process for the production of cellulose sulfate using sulfuric acid/ethanol solution, Carbohydr. Polym. 95 (1) (2013) 332-337.https://pubmed.ncbi.nlm.nih.gov/23618277/ [34] H. Dong, J.F. Snyder, K.S. Williams, J.W. Andzelm, Cation-induced hydrogels of cellulose nanofibrils with tunable moduli, Biomacromolecules 14 (9) (2013) 3338-3345.https://pubmed.ncbi.nlm.nih.gov/23919541/ [35] M. Ghanadpour, F. Carosio, P.T. Larsson, L. Wågberg, Phosphorylated cellulose nanofibrils:A renewable nanomaterial for the preparation of intrinsically flame-retardant materials, Biomacromolecules 16 (10) (2015) 3399-3410.https://pubmed.ncbi.nlm.nih.gov/26402379/ [36] P.M. Patil, A. Shashikant, P.S. Hiremath, S. Roy, Study of liquid oxygen and hydrogen diffusive flow past a sphere with rough surface, Int. J. Hydrog. Energy 44 (48) (2019) 26624-26636. 10.1016/j.ijhydene.2019.08.063 [37] D.Y. Wu, S. Meure, D. Solomon, Self-healing polymeric materials:A review of recent developments, Prog. Polym. Sci. 33 (5) (2008) 479-522. 10.1016/j.progpolymsci.2008.02.001 [38] D.W. Sun, J.H. Yan, X.Y. Ma, M.Z. Lan, Z.M. Wang, S.P. Cui, J.L. Yang, Tribological investigation of self-healing composites containing metal/polymer microcapsules, ES Mater. Manuf. 14 (2021):59-72.https://doi.org/10.30919/esmm5f469 [39] F. Chen, H. Xiao, Z.Q. Peng, Z.P. Zhang, M.Z. Rong, M.Q. Zhang, Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability, Adv. Compos. Hybrid Mater. 4 (4) (2021) 1048-1058. 10.1007/s42114-021-00303-3 [40] C. Liu, Q. Yin, X. Li, L.F. Hao, W.B. Zhang, Y. Bao, J.Z. Ma, A waterborne polyurethane-based leather finishing agent with excellent room temperature self-healing properties and wear-resistance, Adv. Compos. Hybrid Mater. 4 (1) (2021) 138-149. 10.1007/s42114-021-00206-3 [41] Q. Zhu, C.W. Barney, K.A. Erk, Effect of ionic crosslinking on the swelling and mechanical response of model superabsorbent polymer hydrogels for internally cured concrete, Mater. Struct. 48 (7) (2015) 2261-2276.https://doi.org/10.1617/s11527-014-0308-5 [42] R.A. Ilyas, S.M. Sapuan, M.R. Ishak, E.S. Zainudin, Sugar palm nanofibrillated cellulose (Arenga pinnata (Wurmb.) Merr):Effect of cycles on their yield, physic-chemical, morphological and thermal behavior, Int. J. Biol. Macromol. 123 (2019) 379-388.https://pubmed.ncbi.nlm.nih.gov/30447353/ [43] H.F. Seidle, I. Marten, O. Shoseyov, R.E. Huber, Physical and kinetic properties of the family 3 β-glucosidase from aspergillus Niger which is important for cellulose breakdown, Protein J. 23 (1) (2004) 11-23.https://doi.org/10.1023/b:jopc.0000016254.58189.2a [44] Y.P. Liang, X. Zhao, T.L. Hu, B.J. Chen, Z.H. Yin, P.X. Ma, B.L. Guo, Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full-thickness skin regeneration during wound healing, Small 15 (12) (2019) 1900046.https://doi.org/10.1002/smll.201900046 [45] M.H. Zhang, T.B. Qian, Z.W. Deng, F. Hang, 3D printed double-network alginate hydrogels containing polyphosphate for bioenergetics and bone regeneration, Int. J. Biol. Macromol. 188 (2021) 639-648. 10.1016/j.ijbiomac.2021.08.066 [46] M. Milojević, L. Gradišnik, J. Stergar, M. Skelin Klemen, A. Stožer, M. Vesenjak, P. Dobnik Dubrovski, T. Maver, T. Mohan, K. Stana Kleinschek, U. Maver, Development of multifunctional 3D printed bioscaffolds from polysaccharides and NiCu nanoparticles and their application, Appl. Surf. Sci. 488 (2019) 836-852. 10.1016/j.apsusc.2019.05.283 [47] F.Q. Yin, L.F. Lin, S.J. Zhan, Preparation and properties of cellulose nanocrystals, gelatin, hyaluronic acid composite hydrogel as wound dressing, J. Biomater. Sci. Polym. Ed. 30 (3) (2019) 190-201. 10.1080/09205063.2018.1558933 [48] S.Q. Huan, R. Ajdary, L. Bai, V. Klar, O.J. Rojas, Low solids emulsion gels based on nanocellulose for 3D-printing, Biomacromolecules 20 (2) (2019) 635-644.https://pubmed.ncbi.nlm.nih.gov/30240194/ [49] M. Chau, S.E. Sriskandha, D. Pichugin, H. Thérien-Aubin, D. Nykypanchuk, G. Chauve, M. Méthot, J. Bouchard, O. Gang, E. Kumacheva, Ion-mediated gelation of aqueous suspensions of cellulose nanocrystals, Biomacromolecules 16 (8) (2015) 2455-2462 |