[1] X.T. Bi, R.S. Qin, D.Y. Wu, S.D. Zheng, J.S. Zhao, One step forward for smart chemical process fault detection and diagnosis, Comput. Chem. Eng. 164 (2022) 107884 [2] M. Quiñones-Grueiro, A. Prieto-Moreno, C. Verde, O. Llanes-Santiago, Data-driven monitoring of multimode continuous processes:A review, Chemom. Intell. Lab. Syst. 189 (2019) 56-71 [3] Z.Q. Ge, Z.H. Song, F.R. Gao, Review of recent research on data-based process monitoring, Ind. Eng. Chem. Res. 52 (10) (2013) 3543-3562 [4] B.M. Wise, N.L. Ricker, D.F. Veltkamp, B.R. Kowalski, Theoretical basis for the use of principal component models for monitoring multivariate processes, Process Contr. Qual., 1 (1990) 41-51 [5] W.F. Ku, R.H. Storer, C. Georgakis, Disturbance detection and isolation by dynamic principal component analysis, Chemom. Intell. Lab. Syst. 30 (1) (1995) 179-196 [6] J.H. Cho, J.M. Lee, S. Wook Choi, D. Lee, I.B. Lee, Fault identification for process monitoring using kernel principal component analysis, Chem. Eng. Sci. 60 (1) (2005) 279-288 [7] J.F. MacGregor, C. Jaeckle, C. Kiparissides, M. Koutoudi, Process monitoring and diagnosis by multiblock PLS methods, Aiche J. 40 (5) (1994) 826-838 [8] A.A. Khan, J.R. Moyne, D.M. Tilbury, Virtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squares, J. Process. Control 18 (10) (2008) 961-974 [9] Y.N. Dong, S.J. Qin, Dynamic-inner partial least squares for dynamic data modeling, IFAC-PapersOnLine 48 (8) (2015) 117-122 [10] M. Kano, S. Tanaka, S. Hasebe, I. Hashimoto, H. Ohno, Monitoring independent components for fault detection, Aiche J. 49 (4) (2003) 969-976 [11] L.H. Chiang, E.L. Russell, R.D. Braatz, Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis, Chemom. Intell. Lab. Syst. 50 (2) (2000) 243-252 [12] L.H. Chiang, M.E. Kotanchek, A.K. Kordon, Fault diagnosis based on Fisher discriminant analysis and support vector machines, Comput. Chem. Eng. 28 (8) (2004) 1389-1401 [13] H.L. Zhang, Y.S. Qi, L. Wang, X.J. Gao, X.C. Wang, Fault detection and diagnosis of chemical process using enhanced KECA, Chemom. Intell. Lab. Syst. 161 (2017) 61-69 [14] H. Ziaei-Halimejani, R. Zarghami, S.S. Mansouri, N. Mostoufi, Data-driven fault diagnosis of chemical processes based on recurrence plots, Ind. Eng. Chem. Res. 60 (7) (2021) 3038-3055 [15] K. Watanabe, S. Hirota, L.Y. Hou, D.M. Himmelblau, Diagnosis of multiple simultaneous fault via hierarchical artificial neural networks, Aiche J. 40 (5) (1994) 839-848 [16] D. Ruiz, J. Nougués, Z. Calderón, A. Espuña, L. Puigjaner, Neural network based framework for fault diagnosis in batch chemical plants, Comput. Chem. Eng. 24 (2-7) (2000) 777-784 [17] Z.P. Zhang, J.S. Zhao, A deep belief network based fault diagnosis model for complex chemical processes, Comput. Chem. Eng. 107 (2017) 395-407 [18] F.F. Cheng, Q.P. He, J.S. Zhao, A novel process monitoring approach based on variational recurrent autoencoder, Comput. Chem. Eng. 129 (2019) 106515 [19] S.D. Zheng, J.S. Zhao, A new unsupervised data mining method based on the stacked autoencoder for chemical process fault diagnosis, Comput. Chem. Eng. 135 (2020) 106755 [20] S.Y. Zhang, K.X. Bi, T. Qiu, Bidirectional recurrent neural network-based chemical process fault diagnosis, Ind. Eng. Chem. Res. 59 (2) (2020) 824-834 [21] D.Y. Wu, J.S. Zhao, Process topology convolutional network model for chemical process fault diagnosis, Process. Saf. Environ. Prot. 150 (2021) 93-109 [22] X.T. Bi, J.S. Zhao, A novel orthogonal self-attentive variational autoencoder method for interpretable chemical process fault detection and identification, Process. Saf. Environ. Prot. 156 (2021) 581-597 [23] R.S. Qin, J.S. Zhao, High-efficiency generative adversarial network model for chemical process fault diagnosis, IFAC-PapersOnLine 55 (7) (2022) 732-737 [24] C.Y. Weng, B.C. Lu, Q. Gu, A multi-scale kernel-based network with improved attention mechanism for rotating machinery fault diagnosis under noisy environments, Meas. Sci. Technol. 33 (5) (2022) 055108 [25] H. Wu, J.S. Zhao, Deep convolutional neural network model based chemical process fault diagnosis, Comput. Chem. Eng. 115 (2018) 185-197 [26] Q.S. Song, P. Jiang, A multi-scale convolutional neural network based fault diagnosis model for complex chemical processes, Process. Saf. Environ. Prot. 159 (2022) 575-584 [27] W. Zhang, C.H. Li, G.L. Peng, Y.H. Chen, Z.J. Zhang, A deep convolutional neural network with new training methods for bearing fault diagnosis under noisy environment and different working load, Mech. Syst. Signal Process. 100 (2018) 439-453 [28] H. Wu, J.S. Zhao, Self-adaptive deep learning for multimode process monitoring, Comput. Chem. Eng. 141 (2020) 107024 [29] S.D. Zheng, J.S. Zhao, A self-adaptive temporal-spatial self-training algorithm for semisupervised fault diagnosis of industrial processes, IEEE Trans. Ind. Inform. 18 (10) (2022) 6700-6711 [30] H. Wu, J.S. Zhao, Fault detection and diagnosis based on transfer learning for multimode chemical processes, Comput. Chem. Eng. 135 (2020) 106731 [31] M.Q. Miao, C.H. Liu, J.B. Yu, Adaptive densely connected convolutional auto-encoder-based feature learning of gearbox vibration signals, IEEE Trans. Instrum. Meas. 70 (2021) 1-11 [32] Y. Yao, G. Gui, S.X. Yang, S. Zhang, An adaptive anti-noise network with recursive attention mechanism for gear fault diagnosis in real-industrial noise environment condition, Measurement 186 (2021) 110169 [33] C. Szegedy, W. Liu, Y.Q. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA. IEEE, 1-9 [34] T.D. Huang, S. Fu, H.N. Feng, J.F. Kuang, Bearing fault diagnosis based on shallow multi-scale convolutional neural network with attention, Energies 12 (20) (2019) 3937 [35] F. Schroff, D. Kalenichenko, J. Philbin, FaceNet:A unified embedding for face recognition and clustering, 2015 IEEE Conf. Comput. Vis. Pattern Recognit. CVPR (2015) 815-823 [36] T. Han, Y.F. Li, M. Qian, A hybrid generalization network for intelligent fault diagnosis of rotating machinery under unseen working conditions, IEEE Trans. Instrum. Meas. 70 (2021) 1-11 [37] Y. Zhuo, Z.Q. Ge, Auxiliary information-guided industrial data augmentation for any-shot fault learning and diagnosis, IEEE Trans. Ind. Inform. 17 (11) (2021) 7535-7545 [38] S.M. He, X.G. Liu, Y.L. Wang, S.H. Xu, J.G. Lu, C.H. Yang, S.W. Zhou, Y.X. Sun, W.H. Gui, W.Z. Qin, An effective fault diagnosis approach based on optimal weighted least squares support vector machine, Can. J. Chem. Eng. 95 (12) (2017) 2357-2366 [39] Y.Q. Zhang, L. Luo, X. Ji, Y.Y. Dai, Improved random forest algorithm based on decision paths for fault diagnosis of chemical process with incomplete data, Sensors (Basel) 21 (20) (2021) 6715 [40] S. Yoon, J.F. MacGregor, Fault diagnosis with multivariate statistical models part I:Using steady state fault signatures, J. Process. Control 11 (4) (2001) 387-400 [41] C.F. Alcala, S.J. Qin, Reconstruction-based contribution for process monitoring, Automatica 45 (7) (2009) 1593-1600 [42] Y.T. Xiao, H.B. Shi, B.Y. Wang, Y. Tao, S. Tan, B. Song, Weighted conditional discriminant analysis for unseen operating modes fault diagnosis in chemical processes, IEEE Trans. Instrum. Meas. 71 (2022) 1-14 [43] J.J. Downs, E.F. Vogel, A plant-wide industrial process control problem, Comput. Chem. Eng. 17 (3) (1993) 245-255 [44] A. Bathelt, N.L. Ricker, M. Jelali, Revision of the Tennessee Eastman process model, IFAC-PapersOnLine 48 (8) (2015) 309-314 |