[1] C. Arpagaus, F. Bless, J. Schiffmann, S.S. Bertsch, Multi-temperature heat pumps:a literature review, Int. J. Refrig. 69 (2016) 437-465 [2] L. Xia, R.M. Liu, Y.T. Zeng, P. Zhou, J.J. Liu, X.R. Cao, S.G. Xiang, A review of low-temperature heat recovery technologies for industry processes, Chin. J. Chem. Eng. 27 (10) (2019) 2227-2237 [3] M.Z. Pan, H. Zhao, D.W. Liang, Y. Zhu, Y.C. Liang, G.R. Bao, A review of the cascade refrigeration system, Energies 13 (9) (2020) 2254 [4] J.S. Oh, M. Binns, S. Park, J.K. Kim, Improving the energy efficiency of industrial refrigeration systems, Energy 112 (2016) 826-835 [5] M. Martinelli, C. Elsido, I.E. Grossmann, E. Martelli, Simultaneous synthesis and optimization of refrigeration cycles and heat exchangers networks, Appl. Therm. Eng. 206 (2022) 118052 [6] Y.Q. Luo, L. Kong, X.G. Yuan, A systematic approach for synthesizing a low-temperature distillation system, Chin. J. Chem. Eng. 23 (5) (2015) 789-795 [7] C. Elsido, E. Martelli, I.E. Grossmann, Multiperiod optimization of heat exchanger networks with integrated thermodynamic cycles and thermal storages, Comput. Chem. Eng. 149 (2021) 107293 [8] F.J. Barnés, C.J. King, Synthesis of cascade refrigeration and liquefaction systems, Ind. Eng. Chem. Proc. Des. Dev. 13 (4) (1974) 421-433 [9] W.B. Cheng, R.S.H. Mah, Interactive synthesis of cascade refrigeration systems, Ind. Eng. Chem. Proc. Des. Dev. 19 (3) (1980) 410-420 [10] H. Dinh, J. Zhang, Q. Xu, Process synthesis for cascade refrigeration system based on exergy analysis, AIChE J. 61 (8) (2015) 2471-2488 [11] J. Zhang, Q. Xu, Cascade refrigeration system synthesis based on exergy analysis, Comput. Chem. Eng. 35 (9) (2011) 1901-1914 [12] S.H. Choi, V. Manousiouthakis, Global optimization methods for chemical process design:Deterministic and stochastic approaches, Korean J. Chem. Eng. 19 (2) (2002) 227-232 [13] I.E. Grossmann, R.W.H. Sargent, Optimum design of multipurpose chemical plants, Ind. Eng. Chem. Proc. Des. Dev. 18 (2) (1979) 343-348 [14] M.A. Duran, I.E. Grossmann, An outer-approximation algorithm for a class of mixed-integer nonlinear programs, Math. Program. 36 (3) (1986) 307-339 [15] J. Viswanathan, I.E. Grossmann, A combined penalty function and outer-approximation method for MINLP optimization, Comput. Chem. Eng. 14 (7) (1990) 769-782 [16] H.S. Ryoo, N.V. Sahinidis, Global optimization of nonconvex NLPs and MINLPs with applications in process design, Comput. Chem. Eng. 19 (5) (1995) 551-566 [17] T. Westerlund, F. Pettersson, An extended cutting plane method for solving convex MINLP problems, Comput. Chem. Eng. 19 (1995) 131-136 [18] M.F. Cardoso, R.L. Salcedo, S.F. de Azevedo, D. Barbosa, A simulated annealing approach to the solution of minlp problems, Comput. Chem. Eng. 21 (12) (1997) 1349-1364 [19] S. Kirkpatrick, C.D. Gelatt Jr, M.P. Vecchi, Optimization by simulated annealing, Science 220 (4598) (1983) 671-680 [20] J.H. Holland, Adaptation in Natural and Artificial System, The University of Michigan Press, Ann Arbor, 1975 [21] Y. Shi, R.C. Eberhart, Parameter selection in particle swarm optimization, in:Evolutionary programming VII:Proceedings of the EP98, in:Springer-Verlag, New York, 1998:pp. 591-600 [22] J. Kennedy, R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95-International Conference on Neural Networks. November 27-December 1, 1995, Perth, WA, Australia. IEEE, (1995) 1942-1948 [23] M.R. Shelton, I.E. Grossmann, Optimal synthesis of integrated refrigeration systems-I, Comput. Chem. Eng. 10 (5) (1986) 445-459 [24] S. Vaidyaraman, C.D. Maranas, Optimal synthesis of refrigeration cycles and selection of refrigerants, AIChE J. 45 (5) (1999) 997-1017 [25] G. Wu, X.X. Zhu, Design of integrated refrigeration systems, Ind. Eng. Chem. Res. 41 (3) (2002) 553-571 [26] D.L. Chen, X. Ma, Y.Q. Luo, Y.J. Ma, X.G. Yuan, Synthesis of refrigeration system based on generalized disjunctive programming model, Chin. J. Chem. Eng. 26 (8) (2018) 1613-1620 [27] T. Yang, Y.Q. Luo, Y.J. Ma, X.G. Yuan, Optimal synthesis of compression refrigeration system using a novel MINLP approach, Chin. J. Chem. Eng. 26 (8) (2018) 1662-1669 [28] D.L. Chen, Y.Q. Luo, X.G. Yuan, Refrigeration system synthesis by continuous temperature level optimization considering the sub-cooler configuration, Comput. Chem. Eng. 141 (2020) 107031 [29] A.S. Wallerand, M. Kermani, I. Kantor, F. Maréchal, Optimal heat pump integration in industrial processes, Appl. Energy 219 (2018) 68-92 [30] S. Zhang, Y.Q. Luo, X.G. Yuan, A novel stochastic optimization method to efficiently synthesize large-scale nonsharp distillation systems, AIChE J. 67 (9) (2021) e17328 [31] S. Zhang, Y.Q. Luo, Y.J. Ma, X.G. Yuan, Simultaneous optimization of nonsharp distillation sequences and heat integration networks by simulated annealing algorithm, Energy 162 (2018) 1139-1157 [32] Z.Y. Huo, L. Zhao, H.C. Yin, J.X. Ye, A hybrid optimization strategy for simultaneous synthesis of heat exchanger network, Korean J. Chem. Eng. 29 (10) (2012) 1298-1309 [33] J.M. Schultz, The polytropic analysis of centrifugal compressors, J. Eng. Power 84 (1) (1962) 69-82 [34] S.A. Papoulias, I.E. Grossmann, A structural optimization approach in process synthesis-II:heat recovery networks, Comput. Chem. Eng. 7 (6) (1983) 707-721 [35] Y.Q. Luo, X.G. Yuan, Y.J. Liu, An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints, Comput. Chem. Eng. 31 (3) (2007) 153-162 |