[1] H.M. Zhou, Computer Modeling for Injection Molding:Simulation, Optimization, and Control, John Wiley & Sons, Hoboken, 2013. [2] J. Ren, T. Jiang, W.G. Lu, G. Li, An improved parallel SPH approach to solve 3D transient generalized Newtonian free surface flows, Comput. Phys. Commu. 205(2016) 87-105. [3] T. Jiang, Z.C. Chen, W.G. Lu, J.Y. Yuan, D.S. Wang, An efficient split-step and implicit pure mesh-free method for the 2D/3D nonlinear Gross-Pitaevskii equations, Comput. Phys. Commun. 231(2018) 19-30. [4] J.L. Ren, T. Jiang, Simulation of the 3D viscoelastic free surface flow by a parallel corrected particle scheme, Chin. Phys. B 25(2) (2016), 020204-1-14. [5] S. Tiwari, J. Kuhnert, Modeling of two-phase flows with surface tension by finite pointset method (FPM), J. Comput. Appl. Math. 203(2) (2007) 376-386. [6] E.O. Reséndiz-Flores, F.R. Saucedo-Zendejo, Meshfree numerical simulation of free surface thermal flows in mould filling processes using the Finite Pointset Method, Int. J. Therm. Sci. 127(2018) 29-40. [7] C.M. Oishi, F.P. Martins, R.L. Thompson, The "avalanche effect" of an elastoviscoplastic thixotropic material on an inclined plane, J. Non-Newtonian Fluid Mech. 247(2017) 165-177. [8] G.Y. Soh, G.H. Yeoh, V. Timchenko, An algorithm to calculate interfacial area for multiphase mass transfer through the volume-of-fluid method, Int. J. Heat Mass Transf. 100(2016) 573-581. [9] M. Shams, A.Q. Raeini, M.J. Blunt, B. Bijeljic, A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method, J. Comput. Phys. 357(2018) 159-182. [10] S. Mukherjee, A. Zarghami, C. Haringa, K. van As, Simulating liquid droplets:A quantitative assessment of lattice Boltzmann and Volume of Fluid methods, Int. J. Heat Fluid Flow 70(2018) 59-78. [11] A. Osher, R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces, Springer, New York, (2003) 17-22. [12] H.Y. Li, Y.F. Yap, J. Lou, J.C. Chai, Z. Shang, Conjugate heat transfer in stratified two-fluid flows with a growing deposit layer, Appl. Therm. Eng. 113(2017) 215-228. [13] R. Broglia, D. Durante, Accurate prediction of complex free surface flow around a high speed craft using a single-phase level set method, Comput. Mech. 62(3) (2018) 421-437. [14] Q. Li, S.L. Shao, S.S. Li, Numerical simulation of molecular configuration evolution in complex cavity filling process, Acta Phys. Sin. 65(24) (2016) 98-108. [15] Q. Li, Numerical simulation of melt filling process in complex mold cavity with insets using IB-CLSVOF method, Comput. Fluids 132(2016) 94-105. [16] G. Son, Efficient implementation of a coupled level-set and volume-of-fluid method for three-dimensional incompressible two-phase flows, Numer. Heat Tranf. B-Fundam. 43(6) (2003) 549-565. [17] Z. Wang, J. Yang, B. Koo, F. Stern, A coupled level set and volume-of-fluid method for sharp interface simulation of plunging breaking waves, Int. J. Multiphase Flow 35(3) (2009) 227-246. [18] N.K. Singh, B. Premachandran, A coupled level set and volume of fluid method on unstructured grids for the direct numerical simulations of two-phase flows including phase change, Int. J. Heat Mass Transf. 122(2018) 182-203. [19] D.L. Son, S.Y. Bo, Y.P. Wang, W.J. Liu, A VOSET method combined with IDEAL algorithm for 3D two-phase flows with large density and viscosity ratio, Int. J. Heat Mass Transf. 114(2017) 155-168. [20] Z. Cao, D. Sun, J. Wei, B. Yu, A coupled volume-of-fluid and level set method based on multi-dimensional advection for unstructured triangular meshes, Chem. Eng. Sci. 176(2018) 560-579. [21] K. Ling, W.Q. Tao, A sharp-interface model coupling VOSET and IBM for simulations on melting and solidification, Comput. Fluids 178(2019) 113-131. [22] T. Yamamoto, Y. Okano, S. Dost, Quantitative benchmark computations of twodimensional bubble dynamics, Int. J. Numer. Methods Fluids 83(2016) 23-25. [23] Q. Li, H.F. Niu, Three-dimensional simulations of non-isothermal flow for gas penetration in complex cavity during gas assisted injection moulding process, Can. J. Chem. Eng. 96(4) (2018) 978-988. [24] C.S. Peskin, Numerical analysis of blood flow in the heart, J. Comput. Phys. 25(3) (1977) 220-252. [25] M.C. Lai, C.S. Peskin, An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys. 160(2) (2000) 705-719. [26] K. Khadra, P. Angot, S. Parneix, J.P. Caltagirone, Fictitious domain approach for numerical modelling of Navier-Stokes equations, Int. J. Numer. Meth. Fluids 34(8) (2000) 651-684. [27] E.A. Fadlun, R. Verzicco, P. Orlandi, J. Mohd-Yusof, Combined immersedboundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys. 161(1) (2000) 35-60. [28] A. Gilmanov, F. Sotiropoulos, E. Balaras, A general reconstruction algorithm for simulating flows with complex 3D immersed boundaries on Cartesian grids, J. Comput. Phys. 191(2003) 660-669. [29] M. Shrivastava, A. Agrawal, A. Sharma, A novel level set-based immersedboundary method for CFD simulation of moving-boundary problems, Numer. Heat Tranf. B-Fundam. 63(4) (2013) 304-326. [30] T. Patel, A. Lakdawala, A dual grid, dual level set based cut cell immersed boundary approach for simulation of multi-phase flow, Chem. Eng. Sci. 177(2018) 180-194. [31] Z. Cui, Z. Yang, H.Z. Jiang, W.X. Huang, L. Shen, A sharp-interface immersed boundary method for simulating incompressible flows with arbitrarily deforming smooth boundaries, Int. J. Comput. Meth-Sing. 15(01) (2018), 1750080-1-27. [32] M. Chai, K. Luo, C. Shao, J. Fan, An efficient level set remedy approach for simulations of two-phase flow based on sigmoid function, Chem. Eng. Sci. 172(2017) 335-352. [33] C.L. Ruan, J. Ouyang, Microstructures of polymer solutions of flow past a confined cylinder, Polym-Plast. Tech. 49(5) (2010) 510-518. [34] T. Boronat, V.J. Segui, M.A. Peydro, M.J. Reig, Influence of temperature and shear rate on the rheology and processability of reprocessed ABS in injection molding process, J. Mater. Process. Tech. 209(5) (2009) 2735-2745. [35] X. Li, J. Ouyang, Q. Li, J.L. Ren, Simulations of a full three-dimensional packing process and flow-induced stresses in injection molding, J. Appl. Polym. Sci. 126(5) (2012) 1532-1545. [36] S.Y. Cai, W.H. Zhang, Stress constrained topology optimization with free-form design domains, Comput. Method Appl. Mech. 289(2015) 267-290. [37] M. Sussman, E. Fatemi, P. Smereka, S. Osher, An improved level set method for incompressible two-phase flows, Comput. Fluids 27(5-6) (1998) 663-680. [38] J.L. Ren, W.G. Lu, T. Jiang, Improved smooth particle dynamics simulation and prediction of weld line in mold filling process, Acta Phys. Sin. 64(8) (2015), 080202-1-12(in Chinese). [39] C.Y. Shen, Simulation of Injection Molding and Theories and Methods for Optimization of Moulds Designing, Science Press, Beijing, 2009(in Chinese). [40] S.P. Zheng, J. Ouyang, Z.F. Zhao, L. Zhang, An adaptive method to capture weldlines during the injection mold filling, Comput. Math. Appl. 64(2012) 2860-2870. |