[1] D.V.S. Bhagavanulu, Effect of convex and concave curvature on the growth of three-dimensional wall jet in the radial decay region, Int. Res. J. Eng. Technol. 2 (6) (2015) 1310-1315 [2] J.G. Wang, Y.H. Zhang, Z.Y. Bai, C. Huang, H.L. Wang, Effects of inlet size on separation flow field inside hydrocyclone, CIESC J. (2014) 65(1)205-212.(in Chinese) [3] D.I. Kolaitis, M.A. Founti, Modeling of the gas-particle flow in industrial classification Chambers for design optimization, Powder Technol. 125 (2-3) (2002) 298-305 [4] S. Salehi, H. Afshin, B. Farhanieh, Numerical investigation of the inlet baffle, header geometry, and triangular fins effects on plate-fin heat exchangers performance, Heat Transf. Eng. 36 (16) (2015) 1397-1408 [5] S.K. Panda, V.V. Buwa, Effects of geometry and internals of a continuous gravity settler on liquid-liquid separation, Ind. Eng. Chem. Res. 56 (46) (2017) 13929-13944 [6] raul. Eng [7] A. Tamayol, B. Firoozabadi, M.A. Ashjari, Hydrodynamics of secondary settling tanks and increasing their performance using baffles, J. Environ. Eng. 136 (1) (2010) 32-39 [8] A.M. Razmi, R. Bakhtyar, B. Firoozabadi, D.A. Barry, Experiments and numerical modeling of baffle configuration effects on the performance of sedimentation tanks, Can. J. Civ. Eng. 40 (2) (2013) 140-150 [9] H.A. Hussein, R. Abdullah, M.A. Ibrahim, M.A.M. Said, Experimental investigation of the effect of inlet baffle position on the flow pattern, oil concentration, and efficiency of rectangular separator tank, Desalination Water Treat. 57 (51) (2016) 24333-24340 [10] A. Nasiri, M. Abdolzadeh, Effect of baffle arrangement and inlet air velocity on particulate removal efficiency of a gravitational settling chamber in a coke-making plant, Int. J. Coal Prep. Util. 39 (7) (2019) 347-372 [11] A.A. Abbas Hashim, A.A. Abdulrasool, Numerical verification for different types of curved baffles as stratifiers in solar thermal storage tank, IOP Conf. Ser.:Mater. Sci. Eng. 518 (2019) 032052 [12] P. Promvonge, W. Jedsadaratanachai, S. Kwankaomeng, C. Thianpong, 3D simulation of laminar flow and heat transfer in V-baffled square channel, Int. Commun. Heat Mass Transf. 39 (1) (2012) 85-93 [13] J. Zhang, X.L. Liu, B. Gong, Y.X. Li, J.H. Wu, Effect of inlet baffle curvature ratio on the local flow fields in a separator, Chem. Ind. Eng. Prog. (2017) 36(11)3963-3970. (in Chinese) [14] C.T. Hsiao, J.S. Ma, G.L. Chahine, Numerical study of gravity effects on phase separation in a swirl chamber, Chem. Eng. Sci.165 (29) (2017) 177-185 [15] S. Roy, S. Acharya, Scalar mixing in a turbulent stirred tank with pitched blade turbine:Role of impeller speed perturbation, Chem. Eng. Res. Des. 90 (7) (2012) 884-898 [16] R. Kobayashi, N. Fujisawa, Curvature effects on two-dimensional turbulent wall jets, Ingenieur-Archiv 53 (6) (1983) 409-417 [17] P.C. Ma, M. Greene, V. Sick, M. Ihme, Non-equilibrium wall-modeling for internal combustion engine simulations with wall heat transfer, Int. J. Engine Res. 18 (1-2) (2017) 15-25 [18] J.P. van Doormaal, G.D. Raithby, Enhancements of the simple method for predicting incompressible fluid flows, Numer. Heat Transf. 7 (2) (1984) 147-163 [19] A.G. Li, T. Ren, C.Q. Yang, J. Xiong, P.F. Tao, Numerical simulation, PIV measurements and analysis of air movement influenced by nozzle jets and heat sources in underground generator hall, Build. Environ. 131 (2018) 16-31 [20] R.B. Kalifa, S. Habli, N.M. Saïd, H. Bournot, G.L. Palec, The effect of coflows on a turbulent jet impacting on a plate, Appl. Math. Model. 40 (11-12) (2016) 5942-5963 [21] W.C. Reynolds, Fundamentals of turbulence for turbulence modeling and simulation, Lecture Notes for Von Kármán Institute, Agard Report no. 755, 1987. [22] T.H. Shih, W.W. Liou, A. Shabbir, Z.G. Yang, J. Zhu, A new k-∈ eddy viscosity model for high Reynolds number turbulent flows, Comput. Fluids 24 (3) (1995) 227-238 [23] Y.S. Tsai, J.C.R. Hunt, F.T.M. Nieuwstadt, J. Westerweel, B.P.N. Gunasekaran, Effect of strong external turbulence on a wall jet boundary layer, Flow Turbul. Combust. 79 (2) (2007) 155 [24] W.X. Huai, Z.W. Li, Z.D. Qian, Y.H. Zeng, J. Han, W.Q. Peng, Numerical simulation of horizontal buoyant wall jet, J. Hydrodyn. Ser B 22 (1) (2010) 58-65 [25] C.H. Lee, C.H. Xu, Z.H. Huang, A three-phase flow simulation of local scour caused by a submerged wall jet with a water-air interface, Adv. Water Resour. 129 (2019) 373-384 [26] H.L. Toor, Turbulent mixing of two species with and without chemical reactions, Ind. Eng. Chem. Fundam. 8 (4) (1969) 655-659 [27] F.C. Christo, B.B. Dally, Modeling turbulent reacting jets issuing into a hot and diluted coflow, Combust. Flame 142 (1-2) (2005) 117-129 [28] Y.L. Sun, M.H. Sun, W.D. Cheng, C.X. Ma, F. Liu, The examination of water potentials by simulating viscosity, Comput. Mater. Sci. 38 (4) (2007) 737-740 [29] S. Ferrari, G. Querzoli, Mixing and re-entrainment in a negatively buoyant jet, J. Hydraul. Res. 48 (5) (2010) 632-640 [30] L. Furman, Z. Stegowski, CFD models of jet mixing and their validation by tracer experiments, Chem. Eng. Process.:Process. Intensif. 50 (3) (2011) 300-304 [31] J.R. Landel, C.P. Caulfield, A.W. Woods, Streamwise dispersion and mixing in quasi-two-dimensional steady turbulent jets, J. Fluid Mech. 711 (2012) 212-258 [32] C.P. Fonte, M.A. Sultan, R.J. Santos, M.M. Dias, J.C.B. Lopes, Flow imbalance and Reynolds number impact on mixing in Confined Impinging Jets, Chem. Eng. J. 260 (2015) 316-330 [33] B.R. Halls, J.R. Gord, T.R. Meyer, D.J. Thul, M. Slipchenko, S. Roy, 20-kHz-rate three-dimensional tomographic imaging of the concentration field in a turbulent jet, Proc. Combust. Inst. 36 (3) (2017) 4611-4618 [34] D. Kim, S.J. Yi, H.D. Kim, K.C. Kim, Simultaneous measurement of temperature and velocity fields using thermographic phosphor tracer particles, J. Vis. 20 (2) (2017) 305-319 [35] W.W. Ayass, E.F. Nasir, A. Farooq, S.M. Sarathy, Mixing-structure relationship in jet-stirred reactors, Chem. Eng. Res. Des. 111 (2016) 461-464 [36] J.W. Zhang, S.F. Liu, C. Cheng, W.F. Li, X.L. Xu, H.F. Liu, F.C. Wang, Investigation of three-dimensional flow regime and mixing characteristic in T-jet reactor, Chem. Eng. J. 358 (2019) 1561-1573 [37] B. Luczak, R. Müller, C. Kessel, M. Ulbricht, H.J. Schultz, Visualization of flow conditions inside spiral jet Mills with different nozzle numbers- Analysis of unloaded and loaded Mills and correlation with grinding performance, Powder Technol. 342 (2019) 108-117 [38] C. Theobald, The effect of Nozzle design on the stability and performance of turbulent water jets, Fire Saf. J. 4 (1) (1981) 1-13 [39] U.M. Patankar, K. Sridhar, Three-dimensional curved wall jets, J. Basic Eng. 94 (2) (1972) 339-344 [40] N. Rajaratnam, B.S. Pani, Three-dimensional turbulent wall jets, J. Hydr. Div. 100 (1) (1974) 69-83 [41] L. Namgyal, J.W. Hall, Reynolds stress distribution and turbulence generated secondary flow in the turbulent three-dimensional wall jet, J. Fluid Mech. 800 (2016) 613-644 [42] S.C. Godi, A. Pattamatta, C. Balaji, Effect of the inlet geometry on the flow and heat transfer characteristics of three-dimensional wall jets, J. Heat Transf. 141 (11) (2019) 112201. DOI:10.1115/1.4044509 [43] C.Y. Ma, J.J. Liu, Y. Zhang, X.Z. Wang, Simulation for scale-up of a confined jet mixer for continuous hydrothermal flow synthesis of nanomaterials, J. Supercrit. Fluids 98 (2015) 211-221 [44] S. Chatterjee, A. Asad, C. Kratzsch, R. Schwarze, K. Chattopadhyay, Mixing and residence time distribution in an inert gas-shrouded tundish, Metall. Mater. Trans. B 48 (1) (2017) 17-21 [45] C.L. Zhu, H. Liang, D.L. Sun, L.B. Wang, Y.H. Zhang, Numerical study of interactions of vortices generated by vortex generators and their effects on heat transfer enhancement, Numer. Heat Transf. Part A:Appl. 50 (4) (2006) 345-360 [46] Z.F. Zhang, T. Li, W.Q. Shi, Ambient Tracer-LIF for 2-D quantitative measurement of fuel concentration in gas jets, Energy 171 (2019) 372-384 [47] C.M. Khalde, A.V. Pandit, J.S. Sangwai, V.V. Ranade, Flow, mixing, and heat transfer in fluidic oscillators, Can. J. Chem. Eng. 97 (2) (2019) 542-559 [48] Y. Seo, S.W. Lyu, Multifractal characteristics of the jet turbulent intensity depending on the outfall nozzle geometry, Stoch. Environ. Res. Risk Assess. 30 (2) (2016) 653-664 [49] L. Nakharintr, P. Naphon, S. Wiriyasart, Effect of jet-plate spacing to jet diameter ratios on nanofluids heat transfer in a mini-channel heat sink, Int. J. Heat Mass Transf. 116 (2018) 352-361 |