[1] K. Merlin, J. Soto, D. Delaunay, L. Traonvouez, Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage, Appl. Energy 183(2016) 491-503. [2] Y.J. Sun, S.W. Wang, F. Xiao, D.C. Gao, Peak load shifting control using different cold thermal energy storage facilities in commercial buildings:a review, Appl. Energy 71(2013) 101-114. [3] A. Sari, K. Kaygusuz, Thermal energy storage characteristics of myristic and stearic acids eutectic mixture for low temperature heating applications, Chin. J. Chem. Eng. 14(2006) 270-275. [4] C.B. Zhang, S.C. Wu, F. Yao, Evaporation regimes in an enclosed narrow space, Int. J. Heat Mass Transf. 138(2019) 1042-1053. [5] G.J. Suppes, M.J. Goff, S. Lopes, Latent heat characteristics of fatty acid derivatives pursuant phase change material applications, Chem. Eng. Sci. 58(2003) 1751-1763. [6] S.C. Wu, Y.W. Ding, C.B. Zhang, D.H. Xu, Improving the performance of a thermoelectric power system using a flat-plate heat pipe, Chin. J. Chem. Eng. 27(2019) 44-53. [7] K. Hu, L. Chen, Q. Chen, X.H. Wang, J. Qi, Y. Min, Phase-change heat storage installation in combined heat and power plants for integration of renewable energy sources into power system, Energy 124(2017) 640-651. [8] Z.L. Liu, X. Sun, C.F. Ma, Experimental study of the characteristics of solidification of stearic acid in an annulus and its thermal conductivity enhancement, Energy Convers. Manag. 46(6) (2005) 971-984. [9] D.Y. Gao, Z.Q. Chen, M.H. Shi, Z.S. Wu, Study on the melting process of phase change materials in metal foams using lattice Boltzmann method, Sci. China. Technol. Sc. 53(2010) 3079-3087. [10] J. Fukai, Y. Hamada, Y. Morozumi, O. Miyataka, Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes:experiments and modeling, Int. J. Heat Mass Transf. 46(23) (2003) 4513-4525. [11] A.H. Mosaffa, C.A.I. Ferreira, F. Talati, M.A. Rosen, Thermal performance of a multiple PCM thermal storage unit for free cooling, Energy Convers. Manag. 67(2013) 1-7. [12] T. Zhang, M.M. Chen, Y. Zhang, Y. Wang, Microencapsulation of stearic acid with polymethylmethacrylate using iron (Ⅲ) chloride as photo-initiator for thermal energy storage, Chin. J. Chem. Eng. 25(2017) 1524-1532. [13] M.K. Rathod, J. Banerjee, Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins, Appl. Therm. Eng. 75(2015) 1084-1092. [14] X.H. Yang, Z. Lu, Q.S. Bai, Q.L. Zhang, L.W. Jin, J.Y. Yan, Thermal performance of a shell-and-tube latent heat thermal energy storage unit:role of annular fins, Appl. Energy 202(2017) 558-570. [15] Z.H. Rao, Q.C. Wang, C.L. Huang, Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system, Appl. Energy 164(2016) 659-669. [16] J.M. Mahdi, E.C. Nsofor, Melting enhancement in triplex-tube latent thermal energy storage system using nanoparticles-fins combination, Int. J. Heat Mass Transf. 109(2017) 417-427. [17] Y. Tao, Y. He, Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube, Appl. Energy 143(2015) 38-46. [18] H. Eslamnezhad, A.B. Rahimi, Enhance heat transfer for phase-change materials in triplex tube heat exchanger with selected arrangements of fins, Appl. Therm. Eng. 113(2017) 813-821. [19] M. Turkyilmazoglu, Efficiency of heat and mass transfer in fully wet porous fins:exponential fins versus straight fins, Int. J. Refrig. 46(2014) 158-164. [20] M. Turkyilmazoglu, Stretching/shrinking longitudinal fins of rectangular profile and heat transfer, Energy Convers. Manag. 91(2015) 199-203. [21] M. Turkyilmazoglu, Heat transfer from moving exponential fins exposed to heat generation, Int. J. Heat Mass Transf. 116(2018) 346-351. [22] W. Gao, M.F. Liu, S.F. Chen, C.B. Zhang, Y.J. Zhao, Droplet microfluidics with gravitydriven overflow system, Chem. Eng. J. 362(2019) 169-175. [23] A. Sciacovelli, F. Gagliardi, V. Verda, Maximization of performance of a PCM latent heat storage system with innovative fins, Appl. Energy 137(2015) 707-715. [24] M. Sheikholeslami, S. Loharsbi, D.D. Ganji, Numerical analysis of discharging process acceleration in LHTESS by immersing innovative fin configuration using finite element method, Appl. Therm. Eng. 107(2016) 154-166. [25] K. Hosseinzadeh, M. Alizadeh, D.D. Ganji, Solidification process of hybrid nanoenhanced phase change material in a LHTESS with tree-like branching fin in the presence of thermal radiation, J. Mol. Liq. 275(2019) 909-925. [26] C.B. Zhang, J. Li, Y.P. Chen, Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins, Appl. Energy 259(2019) 114102. [27] K.A. Mcculloh, J.S. Sperry, F.R. Adler, Water transport in plants obeys Murray's law, Nature 421(2003) 939-942. [28] Y. Zhou, G.S. Kassab, S. Molloi, On the design of the coronary arterial tree:a generalization of Murray's law, Phys. Med. Biol. 44(12) (1999) 2929-2945. [29] P. Xu, A.P. Sasmito, B. Yu, A.S. Mujumdar, Transport phenomena and properties in treelike networks, Appl. Mech. Rev. 68(2016) 1-9. [30] X.F. Zheng, G.F. Shen, C. Wang, Y. Li, D. Dunphy, T. Hasan, C.J. Brinker, B.L. Su, Bioinspired Murray materials for mass transfer and activity, Nat. Commun. 8(2017) 1-9. [31] A. Arshad, H.M. Ali, M. Ali, S. Manzoor, Thermal performance of phase change material (PCM) based pin-finned heat sinks for electronics devices:effect of pin thickness and PCM volume fraction, Appl. Therm. Eng. 112(2017) 143-155. [32] K.A.R. Ismail, C.L.F. Alves, M.S. Modesto, Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder, Appl. Therm. Eng. 21(1) (2001) 53-77. [33] A.A. Al-Abidi, S. Mat, K. Sopian, M.Y. Sulaiman, A.T. Mohammad, Numerical study of PCM solidification in a triplex tube heat exchanger with internal and external fins, Appl. Therm. Eng. 61(2013) 684-695. [34] B. Zalba, J.M. Marin, L.F. Caberza, H. Mehling, Review on thermal energy storage with phase change:materials, heat transfer analysis and applications, Appl. Therm. Eng. 35(2003) 251-283. [35] V.R. Voller, C. Prakash, A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems, Int. J. Heat Mass Transf. 30(8) (1987) 1709-1719. [36] B. Kamkari, H. Shokouhmand, Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins, Int. J. Heat Mass Transf. 78(2014) 839-851. [37] S. Lohrasbi, M. Sheikholeslami, D.D. Ganji, Multi-objective RSM optimization of fin assisted latent heat thermal energy storage system based on solidification process of phase change material in presence of copper nanoparticles, Appl. Therm. Eng. 118(2017) 430-447. |