中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (2): 308-320.DOI: 10.1016/j.cjche.2020.12.005
• Biomedical Engineering • 上一篇 下一篇
Dan Zeng, Shihong Shen, Daidi Fan
收稿日期:
2020-10-15
修回日期:
2020-12-04
出版日期:
2021-02-28
发布日期:
2021-05-15
通讯作者:
Daidi Fan
基金资助:
Dan Zeng, Shihong Shen, Daidi Fan
Received:
2020-10-15
Revised:
2020-12-04
Online:
2021-02-28
Published:
2021-05-15
Contact:
Daidi Fan
Supported by:
摘要: With the changes in the modern disease spectrum, pressure ulcers, diabetic feet, and vascular-derived diseases caused refractory wounds is increasing rapidly. The development of wound dressings has partly improved the effect of wound management. However, traditional wound dressings can only cover the wound and block bacteria, but are generally powerless to recurrent wound infection and tissue healing. There is an urgent need to develop a new type of wound dressing with comprehensive performance to achieve multiple effects such as protecting the wound site from the external environment, absorbing wound exudate, anti-inflammatory, antibacterial, and accelerating wound healing process. Hydrogel wound dressings have the aforementioned characteristics, and can keep the wound in a moist environment because of the high water content, which is an ideal choice for wound treatment. This review introduces the wound healing process and the development and performance advantages of hydrogel wound dressings. The choice of different preparation materials gives the particularities of different hydrogel wound dressings. It also systematically explains the main physical and chemical crosslinking methods for hydrogel synthesis. Besides, in-depth discussion of four typical hydrogel wound dressings including double network hydrogels, nanocomposite hydrogels, drug-loaded hydrogels and smart hydrogels fully demonstrates the feasibility of developing hydrogels as wound dressing products and their future development trends.
Dan Zeng, Shihong Shen, Daidi Fan. Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications[J]. 中国化学工程学报, 2021, 29(2): 308-320.
Dan Zeng, Shihong Shen, Daidi Fan. Molecular design, synthesis strategies and recent advances of hydrogels for wound dressing applications[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 308-320.
[1] L. Hao, Y. Long, Y. Xunzhou, W. Chengzhou, H. Danfeng, D. Jun, Recent advances of on-demand dissolution of hydrogel dressings, Burns Trauma 6 (004) (2018) 1–13. [2] A. Papagiannopoulos, S. Pispas, Hydrogels, Springer, Singapore, 2018. [3] G.A. Kannon, A.B. Garrett, Moist wound healing with occlusive dressings: A clinical review, Dermatol. Surg. 21 (7) (1995) 583–590. [4] A. Gupta, M. Kowalczuk, W. Heaselgrave, S.T. Britland, C. Martin, I. Radecka, The production and application of hydrogels for wound management: A review, Eur. Polym. J. 111 (2019) 134–151. [5] H. Mndlovu, L.C. du Toit, P. Kumar, Y.E. Choonara, T. Marimuthu, P.P.D. Kondiah, V. Pillay, Bioplatform fabrication approaches affecting chitosanbased interpolymer complex properties and performance as wound dressings, Molecules 25 (1) (2020) 222–250. [6] L. Devi, P. Gaba, Hydrogel: an updated primer, J. Crit. Rev. (2019) 1–10. [7] S.H. Aswathy, U. Narendrakumar, I. Manjubala, Commercial hydrogels for biomedical applications, Heliyon 6 (2020) e03719. [8] E.A. Kamoun, E.S. Kenawy, X. Chen, A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings, J. Adv. Res. 8 (3) (2017) 217–233. [9] G.C. Gurtner, S. Werner, Y. Barrandon, M.T. Longaker, Wound repair and regeneration, Nature 453 (7193) (2008) 314–321. [10] S.M. Levenson, E.F. Geever, L.V. Chowley, J.F. Oates, C.W. Berard, H. Rosen, The healing of rat skin wounds, Ann. Surg. 161 (2) (1965) 293–308. [11] R.C. Op ’t Veld, X.F. Walboomers, J.A. Jansen, F. Wagener, Design considerations for hydrogel wound dressings: strategic and molecular advances, Tissue Eng Part B Rev 26 (3) (2020) 230–248. [12] F.R. Grippaudo, L. Carini, R. Baldini, Procutase versus 1% silver sulphadiazine in the treatment of minor burns, Burns 36 (2010) 871–875. [13] G.D. Winter, Formation of the scab and the rate of re-epithelialisation in the skin of the young domestic pig, Nature 193 (1962) 293–294. [14] R.N. Oliveira, R. Rouzé, B. Quilty, G.G. Alves, G.D. Soares, R.M. Thiré, Mechanical properties and in vitro characterization of polyvinyl alcoholnano-silver hydrogel wound dressings, Interface Focus 4 (2014) 20130049. [15] B. Boonkaew, P.M. Barber, S. Rengpipat, P. Supaphol, M. Kempf, J. He, V.T. John, L. Cuttle, Development and characterization of a novel, antimicrobial, sterile hydrogel dressing for burn wounds: Single-step production with gamma irradiation creates silver nanoparticles and radical polymerization, J. Pharm. Sci. 103 (10) (2014) 3244–3253. [16] M. Ghadiri, W. Chrzanowski, R. Rohanizadeh, Antibiotic eluting clay mineral (Laponite) for wound healing application: An in vitro study, J. Mater. Sci.-Mater. Med. 25 (11) (2014) 2513–2526. [17] S. Natesan, D.O. Zamora, N.L. Wrice, D.G. Baer, R.J. Christy, Bilayer hydrogel with autologous stem cells derived from debrided human burn skin for improved skin regeneration, J. Burn Care Res. 34 (2013) 18–30. [18] M.P. Ribeiro, P.I. Morgado, S.P. Miguel, P. Coutinho, I.J. Correia, Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing, Mater. Sci. Eng. C-Mater. Biol. Appl. 33 (2013) 2958–2966. [19] C.H. Zhu, H. Lei, D.D. Fan, Z.G. Duan, X. Li, Y. Li, J. Cao, S.S. Wang, Y.Y. Yu, Novel enzymatic crosslinked hydrogels that mimic extracellular matrix for skin wound healing, J. Mater. Sci. 53 (8) (2018) 5909–5928. [20] K.J. Quinn, J.M. Courtney, J.H. Evans, Principles of burn dressings, Biomaterials 6 (6) (1985) 369–377. [21] P. Sikareepaisan, U. Ruktanonchai, P. Supaphol, Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings, Carbohydr. Polym. 83 (4) (2011) 1457–1469. [22] H.J. Hong, S.E. Jin, J.S. Park, Accelerated wound healing by smad3 antisense oligonucleotides-impregnated chitosan/alginate polyelectrolyte complex, Biomaterials 29 (36) (2008) 4831–4837. [23] P.S. Patil, N. Fountas-Davis, H. Huang, M. Michelle Evancho-Chapman, J.A. Fulton, L.P. Shriver, N.D. Leipzig, Fluorinated methacrylamide chitosan hydrogels enhance collagen synthesis in wound healing through increased oxygen availability, Acta Biomater. 36 (2016) 164–174. [24] R. Jayakumar, M. Prabaharan, P.T. Sudheesh Kumar, S.V. Nair, H. Tamura, Biomaterials based on chitin and chitosan in wound dressing applications, Biotechnol. Adv. 29 (3) (2011) 322–337. [25] A.M. Heimbuck, T.R. Priddy-Arrington, M.L. Padgett, C.B. Llamas, H.H. Barnett, B.A. Bunnell, M.E. Caldorera-Moore, Development of responsive Chitosan-Genipin hydrogels for the treatment of wounds, ACS Appl. Bio Mater. 2 (7) (2019) 2879–2888. [26] H. Ueno, H. Yamada, I. Tanaka, N. Kaba, M. Matsuura, M. Okumura, T. Kadosawa, T. Fujinaga, Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs, Biomaterials 20 (15) (1999) 1407–1414. [27] X. Du, Y. Liu, H. Yan, M. Rafique, L. Wang, Anti-infective and pro-coagulant chitosan-based hydrogel tissue adhesive for sutureless wound closure, Biomacromolecules 21 (2020) 1243–1253. [28] X. Zhao, H. Wu, B. Guo, R. Dong, Y. Qiu, P.X. Ma, Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing, Biomaterials 122 (2017) 34–47. [29] B. Balakrishnan, M. Mohanty, P.R. Umashankar, A. Jayakrishnan, Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin, Biomaterials 26 (32) (2005) 6335–6342. [30] F. Abasalizadeh, S.V. Moghaddam, E. Alizadeh, E. Akbari, E. Kashani, S.M.B. Fazljou, M. Torbati, A. Akbarzadeh, Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting, J. Biol. Eng. 14 (2020) 8. [31] L.P. da Silva, T.C. Santos, D.B. Rodrigues, R.P. Pirraco, M.T. Cerqueira, R.L. Reis, V.M. Correlo, A.P. Marques, Stem cell-containing hyaluronic acid-based spongy hydrogels for integrated diabetic wound healing, J, Invest. Dermatol. 137 (7) (2017) 1541–1551. [32] X. Xu, A.K. Jha, D.A. Harrington, M.C. Farach-Carson, X. Jia, Hyaluronic acidbased hydrogels: from a natural polysaccharide to complex networks, Soft Matter 8 (12) (2012) 3280–3294. [33] Q. Zhang, X. Wei, Y. Ji, L. Yin, L. Chang, Adjustable and ultrafast light-cured hyaluronic acid hydrogel: promoting biocompatibility and cell growth, J. Mater. Chem. B 8 (2020) 5441–5450. [34] E. Liyaskina, V. Revin, E. Paramonova, M. Nazarkina, N. Pestov, N. Revina, S. Kolesnikova, Nanomaterials from bacterial cellulose for antimicrobial wound dressing, J. Phys. Conf. Ser. 784 (2017) 012034. [35] C. Chuah, J. Wang, J. Tavakoli, Y. Tang, Novel bacterial cellulose-poly (acrylic acid) hybrid hydrogels with controllable antimicrobial ability as dressings for chronic wounds, Polymers (Basel) 10 (12) (2018) 1323–1332. [36] B.V. Mohite, S.V. Patil, In situ development of nanosilver-impregnated bacterial cellulose for sustainable released antimicrobial wound dressing, J. Appl. Biomater. Funct. Mater. 14 (1) (2016) 53–58. [37] M. Khamrai, S.L. Banerjee, S. Paul, S. Samanta, P.P. Kundu, Curcumin entrapped gelatin/ionically modified bacterial cellulose based self-healable hydrogel film: An eco-friendly sustainable synthesis method of wound healing patch, Int. J. Biol. Macromol. 122 (2019) 940–953. [38] M. Li, F. Li, T. Wang, L. Zhao, Y. Shi, Fabrication of carboxymethylcellulose hydrogel containing b-cyclodextrin–eugenol inclusion complexes for promoting diabetic wound healing, J. Biomater. Appl. 34 (6) (2020) 851–863. [39] M.L. Saladino, M. Markowska, C. Carmone, P. Cancemi, R. Alduina, A. Presentato, R. Scaffaro, D. Bialy, M. Hasiak, D. Hreniak, M. Wawrzynska, Graphene oxide carboxymethylcellulose nanocomposite for dressing materials, Materials (Basel) 13 (8) (2020) 1980–1993. [40] Y. Li, C. Zhu, D. Fan, R. Fu, P. Ma, Z. Duan, X. Li, H. Lei, L. Chi, Construction of porous sponge-like PVA-CMC-PEG hydrogels with pH-sensitivity via phase separation for wound dressing, Int. J. Polym. Mater. Polym. Biomater. 69 (8) (2019) 505–515. [41] D.E. Ciolacu, Structure-Property Relationships in Cellulose-Based Hydrogels, Cellulose-Based Superabsorbent Hydrogels, Springer International Publishing AG, 2019, pp. 65–95. [42] S. Nezami, M. Sadeghi, H. Mohajerani, A novel pH-sensitive and magnetic starch-based nanocomposite hydrogel as a controlled drug delivery system for wound healing, Polym. Degrad. Stab. (2020) 109255. [43] W. Wu, P. Hsiao, Y. Huang, Effects of amylose content on starch-chitosan composite film and its application as a wound dressing, J. Polym. Res. 26 (6) (2019) 137–149. [44] M.N. Nicholas, M.G. Jeschke, S. Amini-Nik, Cellularized bilayer PullulanGelatin hydrogel for skin regeneration, Tissue Eng. Part A 22 (9–10) (2016) 754–764. [45] R.S. Singh, N. Kaur, V. Rana, J.F. Kennedy, Pullulan: A novel molecule for biomedical applications, Carbohydr. Polym. (2017) 102–121. [46] X. Ma, L. Zhang, D. Fan, W. Xue, C. Zhu, X. Li, Y. Liu, W. Liu, P. Ma, Y. Wang, Physicochemical properties and biological behavior of injectable crosslinked hydrogels composed of pullulan and recombinant human-like collagen, J. Mater. Sci. 52 (7) (2017) 3771–3785. [47] H. Pan, D. Fan, C. Zhu, Z. Duan, R. Fu, X. Li, Preparation of physically crosslinked PVA/HLC/SA hydrogel and exploration of its effects on fullthickness skin defects, Int. J. Polym. Mater. Polym. Biomater. 68 (17) (2019) 1048–1057. [48] H. Pan, D. Fan, Z. Duan, C. Zhu, R. Fu, X. Li, Non-stick hemostasis hydrogels as dressings with bacterial barrier activity for cutaneous wound healing, Mater. Sci. Eng. C Mater. Biol. Appl. 105 (2019) 110118. [49] Y. Guo, B. Xu, Y. Wang, Y. Li, H. Si, X. Zheng, Z. Chen, F. Chen, D. Fan, Dramatic promotion of wound healing using a recombinant human-like collagen and bFGF cross-linked hydrogel by transglutaminase, J. Biomater. Sci. Polym. Ed. 30 (17) (2019) 1591–1603. [50] J. Cao, P. Wang, Y. Liu, C. Zhu, D. Fan, Double crosslinked HLC-CCS hydrogel tissue engineering scaffold for skin wound healing, Int. J. Biol. Macromol. 155 (2020) 625–635. [51] H. Lei, C. Zhu, D. Fan, Optimization of human-like collagen composite polysaccharide hydrogel dressing preparation using response surface for burn repair, Carbohydr. Polym. 239 (2020) 116249. [52] N. Annabi, D. Rana, E.S. Sani, R. Portillo-Lara, J.L. Gifford, M.M. Fares, S.M. Mithieux, A.S. Weiss, Engineering a sprayable and elastic hydrogel adhesive with antimicrobial properties for wound healing, Biomaterials (2017) 229–243. [53] A.M. Jorgensen, Z. Chou, G. Gillispie, S.J. Lee, J.J. Yoo, S. Soker, A. Atala, Decellularized skin extracellular matrix (dsECM) improves the physical and biological properties of fibrinogen hydrogel for skin bioprinting applications, Nanomaterials (Basel) 10 (8) (2020) 1484–1493. [54] S.M. Pawde, K. Deshmukh, Characterization of polyvinyl alcohol/gelatin blend hydrogel films for biomedical applications, J. Appl. Polym. Sci. 109 (5) (2008) 3431–3437. [55] R.I. Baron, M.E. Culica, G. Biliuta, M. Bercea, S. Gherman, D. Zavastin, L. Ochiuz, M. Avadanei, S. Coseri, Physical hydrogels of oxidized polysaccharides and poly(vinyl alcohol) for wound dressing applications, Materials (Basel) 12 (9) (2019) 1569–1583. [56] Y. Li, C. Zhu, D. Fan, R. Fu, P. Ma, Z. Duan, X. Li, H. Lei, L. Chi, A bi-layer PVA/CMC/PEG hydrogel with gradually changing pore sizes for wound dressing, Macromol. Biosci. 19 (5) (2019) e1800424. [57] R. Singh, D. Singh, Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing, J. Mater. Sci. Mater. Med. 23 (11) (2012) 2649–2658. [58] Y. Dong, H. Zhuang, Y. Hao, L. Zhang, Q. Yang, Y. Liu, C. Qi, S. Wang, Poly(Nisopropyl-acrylamide)/poly(c-glutamic acid) thermo-sensitive hydrogels loaded with superoxide dismutase for wound dressing application, Int. J. Nanomed. 15 (2020) 1939–1950. [59] R.C. Veld, O.I. van den Boomen, D.M.S. Lundvig, E.M. Bronkhorst, P.H.J. Kouwer, J.A. Jansen, E. Middelkoop, J.W. Von den Hoff, A.E. Rowan, F.A.D.T.G. Wagener, Thermosensitive biomimetic polyisocyanopeptide hydrogels may facilitate wound repair, Biomaterials 181 (2018) 392–401. [60] C. Wang, M. Wang, T. Xu, X. Zhang, C. Lin, W. Gao, H. Xu, B. Lei, C. Mao, Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration, Theranostics 9 (1) (2019) 65–76. [61] L. Cai, S. Liu, J. Guo, Y.G. Jia, Polypeptide-based self-healing hydrogels: design and biomedical applications, Acta Biomater. 113 (2020) 84–100. [62] S. Chen, J. Shi, X. Xu, J. Ding, W. Zhong, L. Zhang, M. Xing, L. Zhang, Study of stiffness effects of poly(amidoamine)-poly(n-isopropyl acrylamide) hydrogel on wound healing, Colloids Surf., B 140 (2016) 574–582. [63] M.T. Khorasani, A. Joorabloo, H. Adeli, Z. Mansoori-Moghadam, A. Moghaddam, Design and optimization of process parameters of polyvinyl (alcohol)/chitosan/nano zinc oxide hydrogels as wound healing materials, Carbohydr. Polym. 207 (2019) 542–554. [64] S. Majumder, U. Ranjan Dahiya, S. Yadav, P. Sharma, D. Ghosh, G.K. Rao, V. Rawat, G. Kumar, A. Kumar, C.M. Srivastava, Zinc oxide nanoparticles functionalized on hydrogel grafted silk fibroin fabrics as efficient composite dressing, Biomolecules 10 (5) (2020) 710–713. [65] M. Alavi, A. Nokhodchi, An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers, Carbohydr. Polym. 227 (2020) 115349. [66] F. Garcia-Villen, A. Faccendini, D. Miele, M. Ruggeri, R. Sanchez-Espejo, A. Borrego-Sanchez,P.Cerezo,S.Rossi,C.Viseras,G.Sandri,Woundhealingactivity of nanoclay/spring water hydrogels, Pharmaceutics 12 (5) (2020) 467–490. [67] Z. Rafati, M. Sirousazar, Z.M. Hassan, F. Kheiri, Honey-loaded egg white/poly (vinyl alcohol)/clay bionanocomposite hydrogel wound dressings. Vitro and in vivo evaluations, J. Polym. Environ. 28 (1) (2019) 32–46. [68] Y. Huang, N. Dan, W. Dan, W. Zhao, Reinforcement of polycaprolactone/chitosan with nanoclay and controlled release of curcumin for wound dressing, ACS Omega 4 (27) (2019) 22292–22301. [69] E. Shams, H. Yeganeh, H. Naderi-Manesh, R. Gharibi, Z. Mohammad Hassan, Polyurethane/siloxane membranes containing graphene oxide nanoplatelets as antimicrobial wound dressings: In vitro and in vivo evaluations, J. Mater. Sci. Mater. Med. 28 (5) (2017) 75. [70] Z. Jian, H. Wang, M. Liu, S. Chen, Z. Wang, W. Qian, G. Luo, H. Xia, Polyurethane-modified graphene oxide composite bilayer wound dressing with long-lasting antibacterial effect, Mater. Sci. Eng. C Mater. Biol. Appl. 111 (2020) 110833. [71] H. Hu, F.J. Xu, Rational design and latest advances of polysaccharide-based hydrogels for wound healing, Biomater. Sci. 8 (2020) 2084–2101. [72] D.M. Martínez-Ibarra, D.I. Sánchez-Machado, J. López-Cervantes, O.N. Campas-Baypoli, A. Sanches-Silva, T.J. Madera-Santana, Hydrogel wound dressings based on chitosan and xyloglucan: Development and characterization, J. Appl. Polym. Sci. 136 (12) (2019) 47342. [73] C. Vasile, D. Pamfil, E. Stoleru, M. Baican, New developments in medical applications of hybrid hydrogels containing natural polymers, Molecules 25 (7) (2020) 1539–1606. [74] K.C. Kuo, R.Z. Lin, H.W. Tien, P.Y. Wu, Y.C. Li, J.M. Melero-Martin, Y.C. Chen, Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix, Acta Biomater. 27 (2015) 151–166. [75] J. Xiang, L. Shen, Y. Hong, Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation, Eur. Polym. J. 130 (2020) 109609–109621. [76] W.E. Hennink, C.F. van Nostrum, Novel crosslinking methods to design hydrogels, Adv. Drug Deliv. Rev. 64 (2012) 223–236. [77] Y. Ren, R. Lou, X. Liu, M. Gao, H. Zheng, T. Yang, H. Xie, W. Yu, X. Ma, A selfhealing hydrogel formation strategy via exploiting endothermic interactions between polyelectrolytes, Chem. Commun. 52 (37) (2016) 6273–6276. [78] N. Yuan, L. Xu, B. Xu, J. Zhao, J. Rong, Chitosan derivative-based self-healable hydrogels with enhanced mechanical properties by high-density dynamic ionic interactions, Carbohydr. Polym. 193 (2018) 259–267. [79] M. Rezvanian, N. Ahmad, M.C.I. Mohd Amin, S.F. Ng, Optimization, characterization, and in vitro assessment of alginate-pectin ionic crosslinked hydrogel film for wound dressing applications, Int. J. Biol. Macromol. 97 (2017) 131–140. [80] S.K.H. Gulrez, S. Al-Assaf, G.O. Phillips, Hydrogels: methods of preparation, characterisation and applications, in: P.A. Carpi (Ed.) Progress in Molecular and Environmental Bioengineering-From Analysis and Modeling to Technology Applications, InTech, 2011, pp. 117–150. [81] H. Cong, L. Zhou, Q. Meng, Y. Zhang, B. Yu, Y. Shen, H. Hu, Preparation and evaluation of PAMAM dendrimer-based polymer gels physically cross-linked by hydrogen bonding, Biomater. Sci. 7 (2019) 3918–3925. [82] A. Chhatri, J. Bajpai, A.K. Bajpai, Designing polysaccharide-based antibacterial biomaterials for wound healing applications, Biomatter 1 (2) (2014) 189–197. [83] D. Mukherjee, M. Azamthulla, S. Santhosh, G. Dath, A. Ghosh, R. Natholia, J. Anbu, B.V. Teja, K.M. Muzammil, Development and characterization of chitosan-based hydrogels as wound dressing materials, J. Drug Delivery Sci. Technol. 46 (2018) 498–510. [84] K.L. Spiller, S.J. Laurencin, D. Charlton, S.A. Maher, A.M. Lowman, Superporous hydrogels for cartilage repair: evaluation of the morphological and mechanical properties, Acta Biomater. 4 (1) (2008) 17–25. [85] S. Sasaki, T. Murakami, A. Suzuki, Frictional properties of physically crosslinked PVA hydrogels as artificial cartilage, Biosurf. Biotribol. 2 (1) (2016) 11–17. [86] Hong Pan, Daidi Fan, Wei Cao, Chenhui Zhu, Zhiguang Duan, Preparation and characterization of breathable hemostatic hydrogel dressings and determination of their effects on full-thickness defects, Polymers (2017) 727. [87] A.S. Ahmed, U.K. Mandal, M. Taher, D. Susanti, J.M. Jaffri, PVA-PEG physically cross-linked hydrogel film as a wound dressing: Experimental design and optimization, Pharm. Dev. Technol. (2017) 751–760. [88] W. Hu, Z. Wang, Y. Xiao, S. Zhang, J. Wang, Advances in crosslinking strategies of biomedical hydrogels, Biomater. Sci. 7 (3) (2019) 843–855. [89] Y. Deng, M. Huang, D. Sun, Y. Hou, Y. Li, T. Dong, X. Wang, L. Zhang, W. Yang, Dual physically cross-linked j-carrageenan-based double network hydrogels with superior self-healing performance for biomedical application, ACS Appl. Mater. Interfaces 10 (43) (2018) 37544–37554. [90] A.N. Aini Haryanto, Hydrogel film of polyethylene oxide-polypropylene glycol diacrylate for wound dressing application, IOP Conf. Ser. Mater. Sci. Eng. 403 (2018) 012014. [91] P. Thangavel, B. Ramachandran, R. Kannan, V. Muthuvijayan, Biomimetic hydrogel loaded with silk and l-proline for tissue engineering and wound healing applications, J. Biomed. Mater. Res. B Appl. Biomater. 105 (6) (2017) 1401–1408. [92] W. Liu, H. Wang, T. Lee, R. Chung, Gamma-poly glutamate/gelatin composite hydrogels crosslinked by proanthocyanidins for wound healing, Mater. Sci. Eng. C Mater. Biol. Appl. 101 (2019) 630–639. [93] Y. Chao, X. Ling, Z. Ying, X. Zhang, H. Xin, W. Min, H. Ye, M. Zhai, S. Wei, J. Li, A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing, Carbohydr. Polym. 82 (4) (2010) 1297–1305. [94] Y. Dong, A. Sigen, M. Rodrigues, X. Li, S.H. Kwon, N. Kosaric, S. Khong, Y. Gao, W. Wang, G.C. Gurtner, Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing, Adv. Funct. Mater. 27 (24) (2017) 1606619. [95] H. Li, N. Kong, B. Laver, J. Liu, Hydrogels constructed from engineered proteins, Small 12 (8) (2016) 973–987. [96] Y. Tang, X. Cai, Y. Xiang, Y. Zhao, X. Zhang, Z. Wu, Cross-linked antifouling polysaccharide hydrogel coating as extracellular matrix mimics for wound healing, J. Mater. Chem. B 5 (16) (2017) 2989–2999. [97] X. Wu, C. He, Y. Wu, X. Chen, Synergistic therapeutic effects of Schiff’s base cross-linked injectable hydrogels for local co-delivery of metformin and 5-fluorouracil in a mouse colon carcinoma model, Biomaterials 75 (2016) 148–162. [98] C. Shao, M. Wang, H. Chang, F. Xu, J. Yang, A self-healing cellulose nanocrystal-poly(ethylene glycol) nanocomposite hydrogel via Diels-Alder click reaction, ACS Sustainable Chem. Eng. 5 (7) (2017) 6167–6174. [99] P. Shang, J. Wu, X. Shi, Z. Wang, F. Song, Synthesis of thermo-responsive block-graft copolymer based on PCL and PEG analogs, and preparation of hydrogel via click chemistry, Polymers 11 (5) (2019) 765. [100] M. Yar, S. Shahzad, S.A. Siddiqi, N. Mahmood, A. Rauf, M.S. Anwar, A.A. Chaudhry, I. Rehman, Triethyl orthoformate mediated a novel crosslinking method for the preparation of hydrogels for tissue engineering applications: Characterization and in vitro cytocompatibility analysis, Mater. Sci. Eng. C Mater. Biol. Appl. 56 (2015) 154–164. [101] H. Chen, X. Xing, H. Tan, Y. Jia, T. Zhou, Y. Chen, Z. Ling, X. Hu, Covalently antibacterial alginate-chitosan hydrogel dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing, Mater. Sci. Eng., C 70 (2017) 287–295. [102] T. Hozumi, T. Kageyama, S. Ohta, J. Fukuda, T. Ito, An injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid crosslinked by schiff’s base formation, Biomacromolecules 19 (2) (2018) 288–297. [103] F. Ullah, M.B. Othman, F. Javed, Z. Ahmad, H. Md Akil, Classification, processing and application of hydrogels: a review, Mater. Sci. Eng. C Mater. Biol. Appl. 57 (2015) 414–433. [104] H.F. Darge, A.T. Andrgie, H.C. Tsai, J.Y. Lai, Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications, Int. J. Biol. Macromol. 133 (2019) 545–563. [105] G. Chao, H. Deng, Q. Huang, W. Jia, W. Huang, Y. Gu, H. Tan, L. Fan, C. Liu, A. Huang, K. Lei, C. Gong, M. Tu, Z. Qian, Preparation and characterization of pH sensitive semi-interpenetrating network hydrogel based on methacrylic acid, bovine serum albumin (BSA), and PEG, J. Polym. Res. 13 (5) (2006) 349–355. [106] L. Wang, X. Zhang, K. Yang, Y.V. Fu, T. Xu, S. Li, D. Zhang, L.N. Wang, C.S. Lee, A novel double-crosslinking-double-network design for injectable hydrogels with enhanced tissue adhesion and antibacterial capability for wound treatment, Adv. Funct. Mater. 30 (1) (2019) 1904156–1904169. [107] M. Sahraro, M. Barikani, H. Daemi, Mechanical reinforcement of gellan gum polyelectrolyte hydrogels by cationic polyurethane soft nanoparticles, Carbohydr. Polym. 187 (2018) 102–109. [108] M.R. Saboktakin, A. Maharramov, M.A. Ramazanov, pH-sensitive starch hydrogels via free radical graft copolymerization, synthesis and properties, Carbohydr. Polym. 77 (3) (2009) 634–638. [109] N. Morimoto, F.M. Winnik, K. Akiyoshi, Botryoidal assembly of cholesterylpullulan/poly(N-isopropylacrylamide) nanogels, Langmuir 23 (1) (2007) 217–223. [110] K.M.E. Salmawi, Gamma radiation-induced crosslinked PVA/chitosan blends for wound dressing, J. Macromol. Sci. Part A Chem. 44 (4–6) (2007) 541–545. [111] S.C. Haryanto, J.H. Kim, J.O. Kim, S.K. Kim, H. Ku, D.H. Cho, P.H. Han, Huh, Fabrication of poly(ethylene oxide) hydrogels for wound dressing application using E-beam, Macromol. Res. 22 (2014) 131–138. [112] L. Fan, H. Yang, J. Yang, M. Peng, J. Hu, Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings, Carbohydr. Polym. 146 (2016) 427–434. [113] B. Singh, L. Varshney, S. Francis, Rajneesh, Designing sterile biocompatible moxifloxacin loaded trgacanth-PVA-alginate wound dressing by radiation crosslinking method, Wound Med. 17 (2017) 11–17. [114] Z. Ajji, G. Mirjalili, A. Alkhatab, H. Dada, Use of electron beam for the production of hydrogel dressings, Radiat. Phys. Chem. 77 (2) (2008) 200–202. [115] N. Mohamad, F. Buang, A. Mat Lazim, N. Ahmad, C. Martin, M.C.I. Mohd Amin, Characterization and biocompatibility evaluation of bacterial cellulose-based wound dressing hydrogel: effect of electron beam irradiation doses and concentration of acrylic acid, J. Biomed. Mater. Res. B Appl. Biomater. 105 (8) (2016) 2553–2564. [116] Fani Haryanto, A. Mahardian, Biocompatible hydrogel film of polyethylene oxide-polyethylene glycol dimetacrylate for wound dressing application, IOP Conf. Ser.: Mater. Sci. Eng. 288 (2018) 012076. [117] S. Liu, X. Liu, Y. Ren, P.H. Wang, B. Chi, Mussel-inspired dual-cross-linking hyaluronic acid/e-polylysine hydrogel with self-healing and antibacterial properties for wound healing, ACS Appl. Mater. Interfaces 12 (25) (2020) 27876–27888. [118] N.Q. Tran, Y.K. Joung, E. Lih, K.M. Park, K.D. Park, Supramolecular hydrogels exhibiting fast in situ gel forming and adjustable degradation properties, Biomacromolecules 11 (3) (2010) 617–625. [119] R. Wang, J. Li, W. Chen, T. Xu, S. Yun, Z. Xu, Z. Xu, T. Sato, B. Chi, H. Xu, A biomimetic mussel-inspired e-poly-l-lysine hydrogel with robust tissueanchor and anti-infection capacity, Adv. Funct. Mater. 27 (8) (2017) 1604894. [120] Gong, J. Ping, Why are double network hydrogels so tough?, Soft Matter 6 (12) (2010) 2583. [121] T. Nakajima, J.P. Gong, Double-network hydrogels: Soft and tough IPN, Encycl. Polym. Nanomater. (2013) 1–6. [122] Z. Wang, Y. Wang, X. Peng, Y. He, L. Wei, W. Su, J. Wu, L. Cui, Z. Liu, X. Guo, Photocatalytic antibacterial agent incorporated double-network hydrogel for wound healing, Colloids Surf. B Biointerfaces 180 (2019) 237–244. [123] Y. Wang, Z. Wang, K. Wu, J. Wu, G. Meng, Z. Liu, X. Guo, Synthesis of cellulosebased double-network hydrogels demonstrating high strength, self-healing, and antibacterial properties, Carbohydr. Polym. Sci. Technol. Aspect. Industrially Important Polysaccharides 168 (2017) 112–120. [124] Y. Lv, Z. Pan, C. Song, Y. Chen, X. Qian, Locust bean gum/gellan gum doublenetwork hydrogels with superior self-healing and pH-driven shape-memory properties, Soft Matter 15 (30) (2019) 6171–6179. [125] J.P. Gong, Y. Katsuyama, T. Kurokawa, Y. Osada, Double-network hydrogels with extremely high mechanical strength, Adv. Mater. 15 (14) (2003) 1155–1158. [126] H. Jia, Z. Huang, Z. Fei, P.J. Dyson, Z. Zheng, X. Wang, Unconventional tough double-network hydrogels with rapid mechanical recovery, self-healing, and self-gluing properties, ACS Appl. Mater. Interfaces (2016) 31339. [127] M. Sabzi, N. Samadi, F. Abbasi, G.R. Mahdavinia, M. Babaahmadi, Bioinspired fully physically cross-linked double network hydrogels with a robust, tough and self-healing structure, Mater. Sci. Eng. C Mater. Biol. Appl. 74 (2017) 374–381. [128] Y. Guo, M. He, Y. Peng, Q. Zhang, X. Zan, j-Carrageenan/poly(N-acryloyl glycinamide) double-network hydrogels with high strength, good selfrecovery, and low cytotoxicity, J. Mater. Sci. 55 (21) (2020) 9109–9118. [129] F. Zhao, D. Yao, R. Guo, L. Deng, A. Dong, J. Zhang, Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications, Nanomaterials (Basel) 5 (4) (2015) 2054–2130. [130] P. Thoniyot, M.J. Tan, A.A. Karim, D.J. Young, X.J. Loh, Nanoparticle-hydrogel composites: concept, design, and applications of these promising, multifunctional materials, Adv. Sci. (Weinh) 2 (1–2) (2015) 1400010. [131] M. Hajimiri, S. Shahverdi, M.A. Esfandiari, B. Larijani, F. Atyabi, A. Rajabiani, A. R. Dehpour, M. Amini, R. Dinarvand, Preparation of hydrogel embedded polymer-growth factor conjugated nanoparticles as a diabetic wound dressing, Drug Develop. Industr. Pharmacy 42 (5) (2015) 707–719. [132] G. Xia, Y. Liu, M. Tian, P. Gao, Z. Bao, X. Bai, X. Yu, X. Lang, S. Hua, X. Chen, Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds, J. Mater. Chem. B Mater. Biol. Med. 5 (2017) 3172–3185. [133] S. Roy, A. Banerjee, Amino acid based smart hydrogel: formation, characterization and fluorescence properties of silver nanoclusters within the hydrogel matrix, Soft Matter 7 (11) (2011) 5300–5308. [134] T. Khampieng, S. Wongkittithavorn, S. Chaiarwut, P. Ekabutr, P. Supaphol, Silver nanoparticles-based hydrogel: Characterization of material parameters for pressure ulcer dressing applications, J. Drug Deliv. Sci. Technol. 44 (2017) 91–100. [135] M.T. Khorasani, A. Joorabloo, A. Moghaddam, H. Shamsi, Z. MansooriMoghadam, Incorporation of ZnO nanoparticles into heparinised polyvinyl alcohol/chitosan hydrogels for wound dressing application, Int. J. Biol. Macromol. 114 (2018) 1203–1215. [136] R. Rakhshaei, H. Namazi, A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel, Mater. Sci. Eng., C 73 (2017) 456–464. [137] L. Han, X. Lu, K. Liu, K. Wang, L. Fang, L.T. Weng, H. Zhang, Y. Tang, F. Ren, C. Zhao, G. Sun, R. Liang, Z. Li, Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization, ACS Nano 11 (3) (2017) 2561–2574. [138] K. Yang, Q. Han, B. Chen, Y. Zheng, K. Zhang, Q. Li, J. Wang, Antimicrobial hydrogels: Promising materials for medical application, Int. J. Nanomed. 13 (2018) 2217–2263. [139] K. Lin, S. Wang, L. Fan, D. Pan, S. Jie, Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing, J. Surg. Res. 217 (2017) 63–74. [140] C. Xu, Q. Li, X.T. Hu, C.F. Wang, S. Chen, Dually crosslinked self-healing hydrogels originating from cell-enhanced effect, J. Mater. Chem. B 5 (21) (2017) 3816–3822. [141] H.L. Xu, P.P. Chen, D.L. Zhuge, Q.Y. Zhu, B.H. Jin, B.X. Shen, J. Xiao, Y.Z. Zhao, Liposomes with silk fibroin hydrogel core to stabilize bFGF and promote the wound healing of mice with deep second-degree scald, Adv. Healthcare Mater. 6 (19) (2017) 1700344. [142] S. Huang, T. Deng, H. Wu, F. Chen, Y. Jin, Wound dressings containing bFGFimpregnated microspheres, J. Appl. Polym. Sci. 100 (3) (2010) 4772–4781. [143] M.N.V.R. Kumar, R.A.A. Muzzarelli, C. Muzzarelli, H. Sashiwa, A.J. Domb, Chitosan chemistry and pharmaceutical perspectives, Chem. Rev 104 (12) (2004) 6017–6084. [144] M. Mori, S. Rossi, F. Ferrari, M.C. Bonferoni, G. Sandri, T. Chlapanidas, M.L. Torre, C. Caramella, Sponge-like dressings based on the association of chitosan and sericin for the treatment of chronic skin ulcers. I. Design of experiments-assisted development, J. Pharm. Sci. (2016) 1180–1187. [145] M. Aml, E.M. Mohamed, N. Nivien, Y. Naeima, H. Mostafa, E.S. Sohair, I. Ehsan, E. Mahmoud, In vitro and in vivo evaluation of biologically synthesized silver nanoparticles for topical applications: effect of surface coating and loading into hydrogels, Int. J. Nanomed. 12 (2017) 759–777. [146] W. Huang, R. Ying, W. Wang, Y. Guo, Y. He, X. Mo, C. Xue, X. Mao, A macroporous hydrogel dressing with enhanced antibacterial and antiinflammatory capabilities for accelerated wound healing, Adv. Funct. Mater. 30 (21) (2020) 2000644–2000653. [147] Z. Zhang, T. He, M. Yuan, R. Shen, L. Deng, L. Yi, Z. Sun, Y. Zhang, The in situ synthesis of Ag/amino acid biopolymer hydrogels as mouldable wound dressings, Chem. Commun. (Camb.) 51 (87) (2015) 15862–15865. [148] A. Mohandas, P.T. Sudheesh Kumar, B. Raja, V.K. Lakshmanan, R. Jayakumar, Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds, Int. J. Nanomed. 14 (2019) 2607–2608. [149] S. Sakai, M. Khanmohammadi, A.B. Khoshfetrat, M. Taya, Horseradish peroxidase-catalyzed formation of hydrogels from chitosan and poly(vinyl alcohol) derivatives both possessing phenolic hydroxyl groups, Carbohydr. Polym. 111 (2014) 404–409. [150] C. Chasuda, C. Piyachat, S. Orawan, E. Pongpol, S. Pitt, Hydrogel wound dressings loaded with PLGA/ciprofloxacin hydrochloride nanoparticles for use on pressure ulcers, J. Drug Delivery Sci. Technol. 47 (2018) 106–114. [151] K.K. Mali, S.C. Dhawale, R.J. Dias, V. Ghorpade, N. Dhane, Development of vancomycin-loaded polysaccharide-based hydrogel wound dressings: in vitro and in vivo evaluation, Asian J. Pharmaceutics 12 (2) (2018) 94–105. [152] B. Singh, Rajneesh, Gamma radiation synthesis and characterization of gentamicin loaded polysaccharide gum based hydrogel wound dressings, J. Drug Delivery Sci. Technol. 47 (2018) 200–208. [153] F.C. Flores, J.A. De Lima, C.R.D. Silva, D. Benvegnu, J. Ferreira, M.E. Burger, R.C. R. Beck, C.M.B. Rolim, M.I.U.M. Rocha, M.L.D. Veiga, Hydrogels containing nanocapsules and nanoemulsions of tea tree oil provide antiedematogenic effect and improved skin wound healing, J. Nanosci. Nanotechnol. 15 (1) (2015) 800–809. [154] M. Momin, S. Kurhade, P. Khanekar, S. Mhatre, Novel biodegradable hydrogel sponge containing curcumin and honey for wound healing, J. Wound Care 25 (6) (2016) 364. [155] M.J. Afshari, N. Sheikh, H. Afarideh, PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing, Radiat. Phys. Chem. 113 (2015) 28–35. [156] N. Ojeh, I. Pastar, M. Tomic-Canic, O. Stojadinovic, Stem cells in skin regeneration, wound healing, and their clinical applications, Int. J. Mol. Sci. 16 (10) (2015) 25476–25501. [157] B. Cao, Q. Tang, L. Li, J. Humble, H. Wu, Switchable antimicrobial and antifouling hydrogels with enhanced mechanical properties, Adv. Healthcare Mater. 2 (8) (2013) 1096–1102. [158] H. Yuk, T. Zhang, S. Lin, G.A. Parada, X. Zhao, Tough bonding of hydrogels to diverse non-porous surfaces, Nat. Mater. 15 (2016) 190–196. [159] Q. Pang, D. Lou, S. Li, G. Wang, B. Qiao, S. Dong, L. Ma, C. Gao, Z. Wu, Smart flexible electronics-integrated wound dressing for real-time monitoring and on-demand treatment of infected wounds, Adv. Sci. (Weinh) 7 (6) (2020) 1902673. [160] B. Qiao, Q. Pang, P. Yuan, Y. Luo, L. Ma, Smart wound dressing for infection monitoring and NIR-triggered antibacterial treatment, Biomater. Sci. 8 (6) (2020) 1649–1657. [161] L. Li, L. Xinda, N. Masanori, E. Anastasia, N. Ravin, C. Hyun-Joong, A pHindicating colorimetric tough hydrogel patch towards applications in a substrate for smart wound dressings, Polymers 9 (11) (2017) 558. |
[1] | Hongzhi Zhang, Huiyan Guo, Yang Liu, Chengxiang Shi, Lun Pan, Xiangwen Zhang, Ji-Jun Zou. Thixotropic composite hydrogels based on agarose and inorganic hybrid gellants[J]. 中国化学工程学报, 2023, 54(2): 240-247. |
[2] | 黎新明, 崔英德. Study on Synthesis and Chloramphenicol Release of Poly(2-hydroxyethylmethacrylate-co-acrylamide)Hydrogels[J]. , 2008, 16(4): 640-645. |
[3] | Fadwa Tahra Eljack, Charles Conrad Solvason, Nishanth Chemmangattuvalappil, Mario Richard Eden. A Property Based Approach for Simultaneous Process and Molecular Design[J]. , 2008, 16(3): 424-434. |
[4] | Milica Folić, Rafiqul Gani, Concepción Jiménez-González, David J. C. Constable. Systematic Selection of Green Solvents for Organic Reacting Systems[J]. , 2008, 16(3): 376-383. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||