[1] I. Yarovsky, E. Evans, Computer simulation of structure and properties of crosslinked polymers: Application to epoxy resins, Polymer 43 (3) (2002) 963-969 [2] A. Bandyopadhyay, P.K. Valavala, T.C. Clancy, K.E. Wise, G.M. Odegard, Molecular modeling of crosslinked epoxy polymers: The effect of crosslink density on thermomechanical properties, Polymer 52 (11) (2011) 2445-2452 [3] X. Chen, M.A. Dam, K. Ono, A. Mal, H. Shen, S.R. Nutt, K. Sheran, F. Wudl, A thermally re-mendable cross-linked polymeric material, Science 295 (5560) (2002) 1698-1702 [4] C. Xiang, F. Guo, X. Jia, Y. Wang, X. Huang, Thermo-elastohydrodynamic mixed-lubrication model for reciprocating rod seals, Tribol. Int. 140 (2019) 105894 [5] C. Xiang, F. Guo, X. Liu, Y. Chen, X. Jia, Y. Wang, Numerical algorithm for fluid-solid coupling in reciprocating rod seals, Tribol. Int. 143 (2020) 106078 [6] M. Rafei, M.H.R. Ghoreishy, G. Naderi, Development of an advanced computer simulation technique for the modeling of rubber curing process, Comput. Mater. Sci. 47 (2) (2009) 539-547 [7] A.K. Gopal, S. Adali, V.E. Verijenko, Optimal temperature profiles for minimum residual stress in the cure process of polymer composites, Compos. Struct 48 (1-3) (2000) 99-106 [8] S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta 520 (1-2) (2011) 1-19 [9] G. Milani, F. Milani, Direct and closed form analytical model for the prediction of reaction kinetic of EPDM accelerated sulphur vulcanization, J. Math. Chem. 50 (9) (2012) 2577-2605 [10] M.H.R. Ghoreishy, A state-of-the-art review on the mathematical modeling and computer simulation of rubber vulcanization process, Iran Polym. J. Eng. Educ. 25 (1) (2016) 89-109 [11] J. Šesták, G. Berggren, Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures, Thermochim. Acta 3 (1) (1971) 1-12 [12] M.R. Kamal, S. Sourour, Kinetics and thermal characterization of thermoset cure, Polym. Eng. Sci. 13 (1) (1973) 59-64 [13] J.S. Deng, A.I. Isayev, Injection molding of rubber compounds. Experimentation and simulation, Rubber Chem. Technol. 64 (2) (1991) 296-324 [14] K. Jin, W.H. Heath, J.M. Torkelson, Kinetics of multifunctional thiol-epoxy click reactions studied by differential scanning calorimetry: Effects of catalysis and functionality, Polymer 81 (2015) 70-78 [15] F. Lopez-Serrano, J.E. Puig, E. Mendizabal, A reaction order functional relationship with the Williams-Landel-Ferry equation in curing kinetics, Polym. Eng. Sci. 54 (8) (2014) 1900-1908 [16] Z. Ma, J. Gao, Curing kinetics of o-cresol formaldehyde epoxy resin and succinic anhydride system catalyzed by tertiary amine, J. Phys. Chem. B 110 (25) (2006) 12380-12383 [17] V.L. Zvetkov, Comparative DSC kinetics of the reaction of DGEBA with aromatic diamines. II. Isothermal kinetic study of the reaction of DGEBA with m-phenylene diamine, Polymer 43 (4) (2002) 1069-1080 [18] G. Zhang, J. Cheng, L. Shi, X. Lin, J. Zhang, Study on curing kinetics of diallyl-bearing epoxy resin using sulfur as curing agent, Thermochim. Acta 538 (2012) 36-42 [19] X. Xu, Q. Zhou, N. Song, Q. Ni, L. Ni, Kinetic analysis of isothermal curing of unsaturated polyester resin catalyzed with tert-butyl peroxybenzoate and cobalt octoate by differential scanning calorimetry, J. Therm. Anal. Calorim. 129 (2) (2017) 843-850 [20] B. Lucio, J.L. de la Fuente, Kinetic and chemorheological modelling of the polymerization of 2,4-Toluenediisocyanate and ferrocene-functionalized hydroxyl-terminated polybutadiene, Polymer 140 (2018) 290-303 [21] H. Yeo, Curing kinetics of liquid crystalline 4,4'-Diglycidyloxybiphenyl epoxy cured with 4,4'-Diaminodiphenylsulfone, Polymer 159 (2018) 6-11 [22] S. Rabiei, A. Shojaei, Vulcanization kinetics and reversion behavior of natural rubber/styrene-butadiene rubber blend filled with nanodiamond - the role of sulfur curing system, Eur. Polym. J 81 (2016) 98-113 [23] T.W. Chan, G.D. Shyu, A.I. Isayev, Reduced time approach to curing kinetics, Part I: dynamic rate and master curve from isothermal data, Rubber. Chem. Technol. 66 (94) (1994) 849-864 [24] M. Vafayan, M.H. Beheshty, M.H.R. Ghoreishy, H. Abedini, Advanced integral isoconversional analysis for evaluating and predicting the kinetic parameters of the curing reaction of epoxy prepreg, Thermochim. Acta 557 (2013) 37-43 [25] Y. Jia, S. Sun, L. Liu, S. Xue, G. Zhao, Investigation of computer-aided engineering of silicone rubber vulcanizing (I) - Vulcanization degree calculation based on temperature field analysis, Polymer 44 (1) (2002) 319-326 [26] A. Sadr, R. Granger, J.M. Vergnaud, Profiles of temperature and state of cure developed within rubber in injection molding systems, React. Inject. Mold. 18 (1985) 279-291 [27] L. Gong, H. Yang, Y. Ke, S. Wang, X. Yao, Investigation on vulcanization degree and residual stress on fabric rubber composites, Compos. Struct. 209 (2019) 472-480 [28] A. Dong, Y. Zhao, X. Zhao, Q. Yu, Cure cycle optimization of rapidly cured Out-of-Autoclave composites, Materials 11 (3) (2018) 421-480 [29] F. Shi, X. Dong, Three-dimension numerical simulation for vulcanization process based on unstructured tetrahedron mesh, J. Manuf. Process. 22 (2016) 1-6 [30] W. Yang, S. Lu, W. Liu, Optimization method to select temperature based on chemorheological and exothermal reaction of RTM, J. Appl. Polym. Sci. 136 (46) (2019) 48245 [31] L. Zhao, X. Hu, Autocatalytic curing kinetics of thermosetting polymers: A new model based on temperature dependent reaction orders, Polymer 51 (16) (2010) 3814-3820 [32] A.I. Lesnikovich, S.V. Levchik, A method of finding invariant values of kinetic-parameters, J. Therm. Anal. 27 (1) (1983) 89-94 [33] S. Vyazovkin, N. Sbirrazzuoli, Isoconversional kinetic analysis of thermally stimulated processes in polymers, Macromol. Rapid Commun. 27 (18) (2006) 1515-1532 [34] X. Zhu, D. Yan, Influence of the order of polymer melt on the crystallization behavior: II. Crystallization kinetics of isotactic polypropylene, Colloid. Polym. Sci. 279 (6) (2001) 546-553 [35] B.L. Zhang, Y.Z. Wang, P.Y. Wang, H.H. Huang, Study on vulcanization kinetics of constant viscosity natural rubber by using a rheometer MDR2000, J. Appl. Polym. Sci. 130 (1) (2013) 47-53 [36] K. Taki, N. Shoji, M. Kobayashi, H. Ito, A kinetic model of viscosity development for in situ ring-opening anionic polymerization of ?-caprolactam, Microsyst. Technol. 23 (5) (2016) 1161-1169 [37] E. Leroy, A. Souid, A. Sarda, R. Deterre, A knowledge based approach for elastomer cure kinetic parameters estimation, Polym. Test. 32 (1) (2013) 9-14 [38] O.H. Yeoh, Mathematical modeling of vulcanization characteristics, Rubber. Chem. Technol. 85 (3) (2012) 482-492 [39] L. Gan, Z.J. Sun, Y.Z. Gu, M. Li, Z.G. Zhang, Epoxy resin curing reaction studied by dynamic and isothermal model free kinetics, Acta Polym. Sin. 8 (2010) 1016-1022 [40] M. Cisse, F. Vaillant, O. Acosta, C. Dhuique-Mayer, M. Dornier, Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the arrhenius, eyring, and ball models, J. Agric. Food Chem. 57 (14) (2009) 6285-6291 [41] C. Dhuique-Mayer, M. Tbatou, M. Carail, C. Caris-Veyrat, M. Dornier, M.J. Amiot, Thermal degradation of antioxidant micronutrients in citrus juice: kinetics and newly formed compounds, J. Agric. Food Chem. 55 (10) (2007) 4209-4216 [42] M.D. Stern, A.V. Tobolsky, Stress-time-temperature relations in polysulfide rubbers, J. Chem. Phys. 14 (2) (1946) 93-100 [43] A. Lion, M. Johlitz, On the representation of chemical ageing of rubber in continuum mechanics, Int. J. Solids Struct. 49 (10) (2012) 1227-1240 |