[1] X. Zhao, H. Zhou, V.S. Sikarwar, M. Zhao, A.-H.A. Park, P.S. Fennell, L. Shen, L.-S. Fan, Biomass-based chemical looping technologies: the good, the bad and the future, Energy Environ. Sci. 10 (9) (2017) 1885-1910 [2] E.G. Pereira, J.N. da Silva, J.L. de Oliveira, C.S. Machado, Sustainable energy: A review of gasification technologies, Renew. Sustain. Energy Rev. 16 (7) (2012) 4753-4762 [3] J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, L.F. de Diego, Progress in chemical-looping combustion and reforming technologies, Prog. Energy Combust. Sci. 38 (2) (2012) 215-282 [4] L. Protasova, F. Snijkers, Recent developments in oxygen carrier materials for hydrogen production via chemical looping processes, Fuel 181 (2016) 75-93 [5] Z. Huang, F. He, H. Zhu, D. Chen, K. Zhao, G. Wei, Y. Feng, A. Zheng, Z. Zhao, H. Li, Thermodynamic analysis and thermogravimetric investigation on chemical looping gasification of biomass char under different atmospheres with Fe2O3 oxygen carrier, Appl. Energy 157 (Supplement C) (2015) 546-553 [6] J. Hu, C. Li, Q. Zhang, Q. Guo, S. Zhao, W. Wang, D.-J. Lee, Y. Yang, Using chemical looping gasification with Fe2O3/Al2O3 oxygen carrier to produce syngas (H2+CO) from rice straw, Int. J. Hydrogen Energy 44 (6) (2019) 3382-3386 [7] G. Wei, H. Wang, W. Zhao, Z. Huang, Q. Yi, F. He, K. Zhao, A. Zheng, J. Meng, Z. Deng, J. Chen, Z. Zhao, H. Li, Synthesis gas production from chemical looping gasification of lignite by using hematite as oxygen carrier, Energy Convers. Manage. 185 (2019) 774-782 [8] Z. Wu, B. Zhang, S. Wu, G. Li, S. Zhao, Y. Li, B. Yang, Chemical looping gasification of lignocellulosic biomass with iron-based oxygen carrier: Products distribution and kinetic analysis on gaseous products from cellulose, Fuel Process. Technol. 193 (2019) 361-371 [9] M. Azhar Uddin, H. Tsuda, S. Wu, E. Sasaoka, Catalytic decomposition of biomass tars with iron oxide catalysts, Fuel 87 (4) (2008) 451-459 [10] T. Nordgreen, V. Nemanova, K. Engvall, K. Sjöström, Iron-based materials as tar depletion catalysts in biomass gasification: Dependency on oxygen potential, Fuel 95 (2012) 71-78 [11] T. Nordgreen, T. Liliedahl, K. Sjöström, Metallic iron as a tar breakdown catalyst related to atmospheric, fluidised bed gasification of biomass, Fuel 85 (5) (2006) 689-694 [12] S. Chen, Q. Shi, Z. Xue, X. Sun, W. Xiang, Experimental investigation of chemical-looping hydrogen generation using Al2O3 or TiO2-supported iron oxides in a batch fluidized bed, Int. J. Hydrogen Energy 36 (15) (2011) 8915-8926 [13] Q. Guo, Y. Cheng, Y. Liu, W. Jia, H.-J. Ryu, Coal chemical looping gasification for syngas generation using an iron-based oxygen carrier, Ind. Eng. Chem. Res. 53 (1) (2014) 78-86 [14] Z. Huang, Y. Zhang, J. Fu, L. Yu, M. Chen, S. Liu, F. He, D. Chen, G. Wei, K. Zhao, A. Zheng, Z. Zhao, H. Li, Chemical looping gasification of biomass char using iron ore as an oxygen carrier, Int. J. Hydrogen Energy 41 (40) (2016) 17871-17883 [15] Z. Hu, E. Jiang, X. Ma, The effect of oxygen carrier content and temperature on chemical looping gasification of microalgae for syngas production, J. Energy Inst. 92 (3) (2019) 474-487 [16] L. Wang, X. Feng, L. Shen, S. Jiang, H. Gu, Carbon and sulfur conversion of petroleum coke in the chemical looping gasification process, Energy 179 (2019) 1205-1216 [17] F. Mayer, A.R. Bidwe, A. Schopf, K. Taheri, M. Zieba, G. Scheffknecht, Comparison of a new micaceous iron oxide and ilmenite as oxygen carrier for Chemical looping combustion with respect to syngas conversion, Appl. Energy 113 (2014) 1863-1868 [18] T. Song, J. Wu, H. Zhang, L. Shen, Characterization of an Australia hematite oxygen carrier in chemical looping combustion with coal, Int. J. Greenhouse Gas Control 11 (2012) 326-336 [19] J. Ma, D. Mei, W. Peng, X. Tian, D. Ren, H. Zhao, On the high performance of a core-shell structured CaO-CuO/MgO@Al2O3 material in calcium looping integrated with chemical looping combustion (CaL-CLC), Chem. Eng. J. 368 (2019) 504-512 [20] X. Tian, P. Niu, Y. Ma, H. Zhao, Chemical-looping gasification of biomass: Part II. Tar yields and distributions, Biomass Bioenergy 108 (2018) 178-189 [21] P. Niu, Y. Ma, X. Tian, J. Ma, H. Zhao, Chemical looping gasification of biomass: Part I. screening Cu-Fe metal oxides as oxygen carrier and optimizing experimental conditions, Biomass Bioenergy 108 (2018) 146-156 [22] J. Bao, Z. Li, N. Cai, Reduction kinetics of foreign-ion-promoted ilmenite using carbon monoxide (CO) for chemical looping combustion, Ind. Eng. Chem. Res. 52 (31) (2013) 10646-10655 [23] W.-C. Huang, Y.-L. Kuo, Y.-M. Su, Y.-H. Tseng, H.-Y. Lee, Y. Ku, A facile method for sodium-modified Fe2O3/Al2O3 oxygen carrier by an air atmospheric pressure plasma jet for chemical looping combustion process, Chem. Eng. J. 316 (2017) 15-23 [24] H. Zhong, D. Er, L. Wen, Theoretical study on influence of CaO and MgO on the reduction of FeO by CO, Appl. Surf. Sci. 399 (2017) 630-637 [25] R. Siriwardane, J. Riley, H. Tian, G. Richards, Chemical looping coal gasification with calcium ferrite and barium ferrite via solid-solid reactions, Appl. Energy 165 (2016) 952-966 [26] Q. Hu, C.-H. Wang, Insight into the Fe2O3/CaO-based chemical looping process for biomass conversion, Bioresour. Technol. 310 (2020) 123384 [27] Z. Sun, Z. Chen, S. Toan, Z. Sun, Chemical looping deoxygenated gasification: An implication for efficient biomass utilization with high-quality syngas modulation and CO2 reduction, Energy Convers. Manage. 215 (2020) 112913 [28] Z. Sun, S. Chen, C.K. Russell, J. Hu, A.H. Rony, G. Tan, A. Chen, L. Duan, J. Boman, J. Tang, T. Chien, M. Fan, W. Xiang, Improvement of H2-rich gas production with tar abatement from pine wood conversion over bi-functional Ca2Fe2O5 catalyst: Investigation of inner-looping redox reaction and promoting mechanisms, Appl. Energy 212 (2018) 931-943 [29] Q. Hu, Y. Shen, J.W. Chew, T. Ge, C.-H. Wang, Chemical looping gasification of biomass with Fe2O3/CaO as the oxygen carrier for hydrogen-enriched syngas production, Chem. Eng. J. 379 (2020) 122346 [30] N.C.C. Lobato, E.A. Villegas, M.B. Mansur, Management of solid wastes from steelmaking and galvanizing processes: A brief review, Resour. Conserv. Recycl. 102 (2015) 49-57 [31] L. Xu, G.L. Schwebel, P. Knutsson, H. Leion, Z. Li, N. Cai, Performance of industrial residues as low cost oxygen carriers, Energy Procedia 114 (2017) 361-370 [32] P. Moldenhauer, C. Linderholm, M. Rydén, A. Lyngfelt, Avoiding CO2 capture effort and cost for negative CO2 emissions using industrial waste in chemical-looping combustion/gasification of biomass, Mitig. Adapt. Strat. Glob. Change 25 (1) (2020) 1-24 [33] M. Rydén, M. Hanning, F. Lind, Oxygen carrier aided combustion (OCAC) of wood chips in a 12 MWth circulating fluidized bed boiler using steel converter slag as bed material, Appl. Sci. 8 (12) (2018) 2657 [34] F. Störner, F. Hildor, H. Leion, M. Zevenhoven, L. Hupa, M. Rydén, Potassium ash interactions with oxygen carriers steel converter slag and iron mill scale in chemical-looping combustion of biomass—Experimental evaluation using model compounds, Energy Fuels 34 (2) (2020) 2304-2314 [35] F. Hildor, T. Mattisson, H. Leion, C. Linderholm, M. Rydén, Steel converter slag as an oxygen carrier in a 12 MWth CFB boiler - Ash interaction and material evolution, Int. J. Greenhouse Gas Control 88 (2019) 321-331 [36] E.R. Monazam, R.W. Breault, R. Siriwardane, Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion, Chem. Eng. J. 242 (2014) 204-210 [37] K. Piotrowski, K. Mondal, T. Wiltowski, P. Dydo, G. Rizeg, Topochemical approach of kinetics of the reduction of hematite to wüstite, Chem. Eng. J. 131 (1) (2007) 73-82 [38] M.V.C. Sastri, R.P. Viswanath, B. Viswanathan, Studies on the reduction of iron oxide with hydrogen, Int. J. Hydrogen Energy 7 (12) (1982) 951-955 [39] K. Piotrowski, K. Mondal, H. Lorethova, L. Stonawski, T. Szymański, T. Wiltowski, Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process, Int. J. Hydrogen Energy 30 (15) (2005) 1543-1554 [40] X. Hua, W. Wang, F. Wang, Performance and kinetics of iron-based oxygen carriers reduced by carbon monoxide for chemical looping combustion, Front. Environ. Sci. Eng. 9 (6) (2015) 1130-1138 [41] Y.D. Wang, X.N. Hua, C.C. Zhao, T.T. Fu, W. Li, W. Wang, Step-wise reduction kinetics of Fe2O3 by CO/CO2 mixtures for chemical looping hydrogen generation, Int. J. Hydrogen Energy 42 (9) (2017) 5667-5675 [42] Z. Du, Q. Zhu, Y. Yang, C. Fan, F. Pan, H. Sun, Z. Xie, The role of MgO powder in preventing defluidization during fluidized bed reduction of fine iron ores with different iron valences, Steel Res. Int. 87 (12) (2016) 1742-1749 [43] Y. Zhong, Z. Wang, Z. Guo, Q. Tang, Prevention of agglomeration/defluidization in fluidized bed reduction of Fe2O3 by CO: The role of magnesium and calcium oxide, Powder Technol. 241 (2013) 142-148 [44] E.R. Monazam, N.L. Galinsky, R.W. Breault, S.C. Bayham, Attrition of hematite particles for chemical looping combustion in a conical jet cup, Powder Technol. 340 (2018) 528-536 |