[1] F. Dong, Y. Meng, W.L. Han, H.J. Zhao, Z.C. Tang, Morphology effects on surface chemical properties and lattice defects of Cu/CeO2 catalysts applied for low-temperature CO oxidation, Sci. Rep. 9 (1) (2019) 12056. [2] Y.Y. Shi, L.L. Xu, M.D. Chen, B. Yang, G. Cheng, C.E. Wu, Z.C. Miao, N. Wang, X. Hu, Fabricating Cu2O-CuO submicron-cubes for efficient catalytic CO oxidation: The significant effect of heterojunction interface, J. Ind. Eng. Chem. 105 (2022) 324–336. [3] Z. Yan, S. Chinta, A.A. Mohamed, J.P. Fackler Jr, D.W. Goodman, CO oxidation over Au/TiO2 prepared from metal-organic gold complexes, Catal. Lett. 111 (1) (2006) 15–18. [4] M. Nishibori, W. Shin, N. Izu, T. Itoh, I. Matsubara, CO oxidation performance of Au/Co3O4 catalyst on the micro gas sensor device, Catal. Today 201 (2013) 85–91. [5] Y.L. Zhang, J.Y. Zhang, B.S. Zhang, R. Si, B. Han, F. Hong, Y.M. Niu, L. Sun, L. Li, B.T. Qiao, K.J. Sun, J.H. Huang, M. Haruta, Boosting the catalysis of gold by O2 activation at Au-SiO2 interface, Nat. Commun. 11 (2020) 558. [6] F. Hong, S.Y. Wang, J.Y. Zhang, B.S. Zhang, K.J. Sun, J.H. Huang, B.T. Qiao, N. Ta, M.R. Li, D. Li, W.X. Huang, M. Haruta, C. Li, Blocking the non-selective sites through surface plasmon-induced deposition of metal oxide on Au/TiO2 for CO-PROX reaction, Chem Catal. 1 (2) (2021) 456–466. [7] U. Oran, D. Uner, Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/γ-Al2O3 catalysts, Appl. Catal. B 54 (3) (2004) 183–191. [8] A.B. Zhou, J. Wang, H. Wang, H. Li, J.Q. Wang, M.Q. Shen, Effect of active oxygen on the performance of Pt/CeO2 catalysts for CO oxidation, J. Rare Earths 36 (3) (2018) 257–264. [9] E.M. Slavinskaya, R.V. Gulyaev, A.V. Zadesenets, O.A. Stonkus, V.I. Zaikovskii, Y.V. Shubin, S.V. Korenev, A.I. Boronin, Low-temperature CO oxidation by Pd/CeO2 catalysts synthesized using the coprecipitation method, Appl. Catal. B 166-167 (2015) 91–103. [10] Y. Yan, H.X. Li, Z.H. Lu, X.W. Wang, R.B. Zhang, G. Feng, Effects of reduction temperature and content of Pd loading on the performance Pd/CeO2 catalyst for CO oxidation, Chin. Chem. Lett. 30 (6) (2019) 1153–1156. [11] L. Li, Q.L. Yang, C.Y. Zhang, J.L. Yan, Y.E. Peng, J.H. Li, Hollow-structural Ag/Co3O4 nanocatalyst for CO oxidation: Interfacial synergistic effect, ACS Appl. Nano Mater. 2 (6) (2019) 3480–3489. [12] K. Narasimharao, A. Al-Shehri, S. Al-Thabaiti, Porous Ag-Fe2O3 nanocomposite catalysts for the oxidation of carbon monoxide, Appl. Catal. A 505 (2015) 431–440. [13] X.L. Zhang, G.J. Li, R.L. Tian, W.J. Feng, L. Wen, Monolithic porous CuO/CeO2 nanorod composites prepared by dealloying for CO catalytic oxidation, J. Alloys Compd. 826 (2020) 154149. [14] S.S. Sun, D.S. Mao, J. Yu, Enhanced CO oxidation activity of CuO/CeO2 catalyst prepared by surfactant-assisted impregnation method, J. Rare Earths 33 (12) (2015) 1268–1274. [15] W. Xue, M.M. Qu, Z.Y. Wang, W.S. Li, A.Z. Jia, F. Li, Z.M. Wang, Y.J. Wang, Role of benzene-1, 3, 5-tricarboxylate ligand in CuO-CeO2 catalysts derived from metal-organic frameworks for carbon monoxide oxidation, Catal. Lett. 153 (1) (2023) 219–229. [16] Z.F. Gu, D.W. Liu, M.N. Yu, T. Bao, X.W. Liu, L. Zhang, H.T. Ding, Z.M. Yu, C.X. Deng, Preparation of a transition metal-supported TiO2 catalyst and the catalytic oxidative degradation of toluene, J. Environ. Chem. Eng. 10 (5) (2022) 108327. [17] C.H. Fang, X.M. Jiang, J.W. Hu, J.J. Song, N. Sun, D.L. Zhang, L. Kuai, Ru nanoworms loaded TiO2 for their catalytic performances toward CO oxidation, ACS Appl. Mater. Interfaces 13 (4) (2021) 5079–5087. [18] R. Camposeco, A.E. Torres, R. Zanella, Catalytic oxidation of propane over Pt-Pd bimetallic nanoparticles supported on TiO2, Mol. Catal. 532 (2022) 112738. [19] L.B. Di, D.Z. Duan, X.L. Zhang, B. Qi, Z.B. Zhan, Effect of TiO2 crystal phase and preparation method on the catalytic performance of Au/TiO2 for CO oxidation, IEEE Trans. Plasma Sci. 44 (11) (2016) 2692–2698. [20] M.Y. Kang, H.J. Yun, S. Yu, W. Kim, N.D. Kim, J. Yi, Effect of TiO2 crystalline phase on CO oxidation over CuO catalysts supported on TiO2, J. Mol. Catal. A 368-369 (2013) 72–77. [21] Y. Xie, J.F. Wu, G.J. Jing, H. Zhang, S.H. Zeng, X.P. Tian, X.Y. Zou, J. Wen, H.Q. Su, C.J. Zhong, P.X. Cui, Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes, Appl. Catal. B 239 (2018) 665–676. [22] T.S. Cam, S.O. Omarov, M.I. Chebanenko, A.S. Sklyarova, V.N. Nevedomskiy, V.I. Popkov, One step closer to the low-temperature CO oxidation over non-noble CuO/CeO2 nanocatalyst: The effect of CuO loading, J. Environ. Chem. Eng. 9 (4) (2021) 105373. [23] T.S. Cam, T.A. Vishnievskaia, V.I. Popkov, Catalytic oxidation of CO over CuO/CeO2nanocomposites synthesized via solution combustion method: Effect of fuels, REVIEWS ADVANCED Mater. SCIENCE 59 (1) (2020) 131–143. [24] W.W. Wang, W.Z. Yu, P.P. Du, H. Xu, Z. Jin, R. Si, C. Ma, S. Shi, C.J. Jia, C.H. Yan, Crystal plane effect of ceria on supported copper oxide cluster catalyst for CO oxidation: Importance of metal–support interaction, ACS Catal. 7 (2) (2017) 1313–1329. [25] Z.H. Wang, R. Li, Q.W. Chen, Enhanced activity of CuCeO catalysts for CO oxidation: Influence of Cu2O and the dispersion of Cu2O, CuO, and CeO2, ChemPhysChem 16 (11) (2015) 2415–2423. [26] Y.X. Li, Y. Cai, X.X. Xing, N. Chen, D.Y. Deng, Y.D. Wang, Catalytic activity for CO oxidation of Cu-CeO2 composite nanoparticles synthesized by a hydrothermal method, Anal. Methods 7 (7) (2015) 3238–3245. [27] M. Lykaki, E. Pachatouridou, S.A.C. Carabineiro, E. Iliopoulou, C. Andriopoulou, N. Kallithrakas-Kontos, S. Boghosian, M. Konsolakis, Ceria nanoparticles shape effects on the structural defects and surface chemistry: Implications in CO oxidation by Cu/CeO2 catalysts, Appl. Catal. B 230 (2018) 18–28. [28] L.Y. Li, W.L. Han, Z.C. Tang, J.Y. Zhang, G.X. Lu, Hard-template synthesis of three-dimensional mesoporous Cu-Ce based catalysts with tunable architectures and their application in the CO catalytic oxidation, RSC Adv. 6 (69) (2016) 64247–64257. [29] B.L. Liu, Y.Z. Li, Y.L. Cao, L. Wang, S.J. Qing, K. Wang, D.Z. Jia, Optimum balance of Cu+ and oxygen vacancies of CuOx-CeO2 composites for CO oxidation based on thermal treatment, Eur. J. Inorg. Chem. 2019 (13) (2019) 1714–1723. [30] L.Y. Du, W.W. Wang, H. Yan, X. Wang, Z. Jin, Q.S. Song, R. Si, C.J. Jia, Copper-ceria sheets catalysts: Effect of copper species on catalytic activity in CO oxidation reaction, J. Rare Earths 35 (12) (2017) 1186–1196. [31] F. Zhao, S.D. Li, X.F. Wu, R.L. Yue, W.M. Li, X.C. Zha, Y.Z. Deng, Y.F. Chen, Catalytic behaviour of flame-made CuO-CeO2 nanocatalysts in efficient CO oxidation, Catalysts 9 (3) (2019) 256. [32] X.Y. Jiang, G.L. Lu, R.X. Zhou, J.X. Mao, Y. Chen, X.M. Zheng, Studies of pore structure, temperature-programmed reduction performance, and micro-structure of CuO/CeO2 catalysts, Appl. Surf. Sci. 173 (3–4) (2001) 208–220. [33] J.A. Zeng, G.L. Zhou, Y.M. Ai, N. Li, G.Z. Zhang, Catalytic wet peroxide oxidation of chlorophenol over a Ce0.86Cu0.14–x O2 catalyst, Int. J. Chem. React. Eng. 11 (1) (2013) 577–585. [34] X. Zhang, L.F. Su, Y.L. Kong, D. Ma, Y. Ran, S.J. Peng, L.H. Wang, Y.D. Wang, CeO2 nanoparticles modified by CuO nanoparticles for low-temperature CO oxidation with high catalytic activity, J. Phys. Chem. Solids 147 (2020) 109651. [35] C. Wang, Q.P. Cheng, X.L. Wang, K. Ma, X.Q. Bai, S.R. Tan, Y. Tian, T. Ding, L.R. Zheng, J. Zhang, X.G. Li, Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO2 nanocrystals, Appl. Surf. Sci. A J. Devoted Prop. Interfaces Relat. Synth. Behav. Mater. 422 (Nov.15)(2017)932–943. [36] Z.M. Gao, Y.Y. Gong, Q. Zhang, H. Deng, Y. Yue, Preferential oxidation of CO in excess H2 over the CeO2/CuO catalyst: Effect of initial support, J. Energy Chem. 23 (4) (2014) 475–482. [37] S. Jampa, K. Wangkawee, S. Tantisriyanurak, J. Changpradit, A.M. Jamieson, T. Chaisuwan, A. Luengnaruemitchai, S. Wongkasemjit, High performance and stability of copper loading on mesoporous ceria catalyst for preferential oxidation of CO in presence of excess of hydrogen, Int. J. Hydrog. Energy 42 (8) (2017) 5537–5548. [38] X.J. Yao, F. Gao, Q. Yu, L. Qi, C.J. Tang, L. Dong, Y. Chen, NO reduction by CO over CuO-CeO2catalysts: Effect of preparation methods, Catal. Sci. Technol. 3 (5) (2013) 1355–1366. [39] H.L. Li, C.Y. Wu, Y. Li, J.Y. Zhang, CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas, Environ. Sci. Technol. 45 (17) (2011) 7394–7400. [40] Y.L. Wang, H. Liu, Z. Ma, Cerium phosphate-supported Au catalysts for CO oxidation, Chin. J. Chem. Eng. 26 (10) (2018) 2055–2063. [41] W.Q. Xu, H.R. Wang, X. Zhou, T.Y. Zhu, CuO/TiO2 catalysts for gas-phase Hg0 catalytic oxidation, Chem. Eng. J. 243 (2014) 380–385. [42] A. Elmhamdi, R. Castañeda, A. Kubacka, L. Pascual, K. Nahdi, A. Martínez-Arias, Characterization and catalytic properties of CuO/CeO2/MgAl2O4 for preferential oxidation of CO in H2-rich streams, Appl. Catal. B 188 (2016) 292–304. [43] L. Qi, Q. Yu, Y. Dai, C.J. Tang, L.J. Liu, H.L. Zhang, F. Gao, L. Dong, Y. Chen, Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation, Appl. Catal. B 119-120 (2012) 308–320. [44] J.A. Cecilia, A. Arango-Díaz, F. Franco, J. Jiménez-Jiménez, L. Storaro, E. Moretti, E. Rodríguez-Castellón, CuO-CeO2 supported on montmorillonite-derived porous clay heterostructures (PCH) for preferential CO oxidation in H2-rich stream, Catal. Today 253 (2015) 126–136. [45] Y.N. Wu, Y.Y. Fu, L. Zhang, Y.H. Ren, X.Y. Chen, B. Yue, H.Y. He, Study of oxygen vacancies on different facets of anatase TiO2, Chin. J. Chem. 37 (9) (2019) 922–928. [46] C.X. Song, Z.Y. Zhao, H.H. Li, D.B. Wang, Y.Z. Yang, CeO2 decorated CuO hierarchical composites as inverse catalyst for enhanced CO oxidation, RSC Adv. 6 (105) (2016) 102931–102937. [47] J.A. Zhu, G.M. Zhang, G.A. Xian, N. Zhang, J.W. Li, A high-efficiency CuO/CeO2 catalyst for diclofenac degradation in fenton-like system, Front. Chem. 7 (2019) 796. [48] J. Zhang, M. Gong, Y.D. Cao, C.G. Wang, Facile synthesis of well-dispersed CeO2-CuOx composite hollow spheres with superior catalytic activity for CO oxidation, RSC Adv. 5 (115) (2015) 95133–95139. [49] J.E. Li, G.Z. Lu, G.S. Wu, D.S. Mao, Y.L. Guo, Y.Q. Wang, Y. Guo, Effect of TiO2 crystal structure on the catalytic performance of Co3O4/TiO2 catalyst for low-temperature CO oxidation, Catal. Sci. Technol. 4 (5) (2014) 1268–1275. [50] D. Hamdi, L. Mansouri, V. Srivastava, M. Sillanpaa, L. Bousselmi, Enhancement of Eu and Ce doped TiO2 thin films photoactivity: Application on Amido Black photodegradation, Inorg. Chem. Commun. 133 (2021) 108912. [51] X.Y. Pan, M.Q. Yang, X.Z. Fu, N. Zhang, Y.J. Xu, Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications, Nanoscale 5 (9) (2013) 3601–3614. [52] G.H. Li, N.M. Dimitrijevic, L. Chen, T. Rajh, K.A. Gray, Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO–TiO2 nanocomposites, J. Phys. Chem. C 112 (48) (2008) 19040–19044. [53] H.D. Tang, Y. Wang, W.J. Zhang, Z.J. Liu, L.C. Li, W.F. Han, Y. Li, Catalytic activity of Ru supported on SmCeOx for ammonia decomposition: The effect of Sm doping, J. Solid State Chem. 295 (2021) 121946. [54] H.Q. Wan, Z. Wang, J. Zhu, X.W. Li, B. Liu, F. Gao, L. Dong, Y. Chen, Influence of CO pretreatment on the activities of CuO/γ-Al2O3 catalysts in CO + O2 reaction, Appl. Catal. B 79 (3) (2008) 254–261. [55] C.Q. Li, Y. Yang, W. Ren, J. Wang, T.Y. Zhu, W.Q. Xu, Effect of Ce doping on catalytic performance of Cu/TiO2 for CO oxidation, Catal. Lett. 150 (7) (2020) 2045–2055. [56] A. Davó-Quiñonero, M. Navlani-García, D. Lozano-Castelló, A. Bueno-López, J.A. Anderson, Role of hydroxyl groups in the preferential oxidation of CO over copper oxide–cerium oxide catalysts, ACS Catal. 6 (3) (2016) 1723–1731. [57] A. Hornés, P. Bera, A.L. Cámara, D. Gamarra, G. Munuera, A. Martínez-Arias, CO-TPR-DRIFTS-MS in situ study of CuO/Ce1-xTbxO2-y (x = 0, 0.2 and 0.5) catalysts: Support effects on redox properties and CO oxidation catalysis, J. Catal. 268 (2) (2009) 367–375. [58] O. Pozdnyakova, D. Teschner, A. Wootsch, J. Kröhnert, B. Steinhauer, H. Sauer, L. Toth, F.C. Jentoft, A. Knop-Gericke, Z. Paál, R. Schlögl, Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions, J. Catal. 237 (1) (2006) 1–16. |