[1] T. Uchino, C. Fushimi, Fluidized bed reactor for thermochemical heat storage using Ca(OH)2/CaO to absorb the fluctuations of electric power supplied by variable renewable energy sources: A dynamic model, Chem. Eng. J. 419 (2021) 129571. [2] H. Holttinen, Impact of hourly wind power variations on the system operation in the Nordic countries, Wind. Energy 8 (2) (2005) 197–218. [3] S.N. Xiao, T. Praditia, S. Oladyshkin, W. Nowak, Global sensitivity analysis of a CaO/Ca(OH)2 thermochemical energy storage model for parametric effect analysis, Appl. Energy 285 (2021) 116456. [4] G. Alva, Y.X. Lin, G.Y. Fang, An overview of thermal energy storage systems, Energy 144 (2018) 341–378. [5] M.M.A. Khan, N.I. Ibrahim, I.M. Mahbubul, H.M. Ali, R. Saidur, F.A. Al-Sulaiman, Evaluation of solar collector designs with integrated latent heat thermal energy storage: A review, Sol. Energy 166 (2018) 334–350. [6] X.Y. Chen, Z. Zhang, C.G. Qi, X. Ling, H. Peng, State of the art on the high-temperature thermochemical energy storage systems, Energy Convers. Manag. 177 (2018) 792–815. [7] S.J. Davis, N.S. Lewis, M. Shaner, S. Aggarwal, D. Arent, I.L. Azevedo, S.M. Benson, T. Bradley, J. Brouwer, Y.M. Chiang, C.T.M. Clack, A. Cohen, S. Doig, J. Edmonds, P. Fennell, C.B. Field, B. Hannegan, B.M. Hodge, M.I. Hoffert, E. Ingersoll, P. Jaramillo, K.S. Lackner, K.J. Mach, M. Mastrandrea, J. Ogden, P.F. Peterson, D.L. Sanchez, D. Sperling, J. Stagner, J.E. Trancik, C.J. Yang, K. Caldeira, Net-zero emissions energy systems, Science 360 (6396) (2018) eaas9793. [8] F. Schaube, L. Koch, A. Wörner, H. Müller-Steinhagen, A thermodynamic and kinetic study of the de- and rehydration of Ca(OH)2 at high H2O partial pressures for thermo-chemical heat storage, Thermochim. Acta 538 (2012) 9–20. [9] M. Angerer, M. Becker, S. Härzschel, K. Kröper, S. Gleis, A. Vandersickel, H. Spliethoff, Design of a MW-scale thermo-chemical energy storage reactor, Energy Rep. 4 (2018) 507–519. [10] G. Seitz, F. Mohammadi, H. Class, Thermochemical heat storage in a lab-scale indirectly operated CaO/Ca(OH)2 reactor—numerical modeling and model validation through inverse parameter estimation, Appl. Sci. 11 (2) (2021) 682. [11] P. Pardo, A. Deydier, Z. Anxionnaz-Minvielle, S. Rougé, M. Cabassud, P. Cognet, A review on high temperature thermochemical heat energy storage, Renew. Sustain. Energy Rev. 32 (2014) 591–610. [12] A.J. Carrillo, J. González-Aguilar, M. Romero, J.M. Coronado, Solar energy on demand: A review on high temperature thermochemical heat storage systems and materials, Chem. Rev. 119 (7) (2019) 4777–4816. [13] G. Ervin, Solar heat storage using chemical reactions, J. Solid State Chem. 22 (1) (1977) 51–61. [14] Y.A. Criado, M. Alonso, J.C. Abanades, Kinetics of the CaO/Ca(OH)2 hydration/dehydration reaction for thermochemical energy storage applications, Ind. Eng. Chem. Res. 53 (32) (2014) 12594–12601. [15] K.G. Sakellariou, G. Karagiannakis, Y.A. Criado, A.G. Konstandopoulos, Calcium oxide based materials for thermochemical heat storage in concentrated solar power plants, Sol. Energy 122 (2015) 215–230. [16] Y. Álvarez Criado, M. Alonso, J.C. Abanades, Composite material for thermochemical energy storage using CaO/Ca(OH)2, Ind. Eng. Chem. Res. 54 (38) (2015) 9314–9327. [17] Y.A. Criado, M. Alonso, J.C. Abanades, Enhancement of a CaO/Ca(OH)2 based material for thermochemical energy storage, Sol. Energy 135 (2016) 800–809. [18] J. Kariya, J. Ryu, Y. Kato, Development of thermal storage material using vermiculite and calcium hydroxide, Appl. Therm. Eng. 94 (2016) 186–192. [19] J. Yan, C.Y. Zhao, First-principle study of CaO/Ca(OH)2 thermochemical energy storage system by Li or Mg cation doping, Chem. Eng. Sci. 117 (2014) 293–300. [20] J. Yan, C.Y. Zhao, Thermodynamic and kinetic study of the dehydration process of CaO/Ca(OH)2 thermochemical heat storage system with Li doping, Chem. Eng. Sci. 138 (2015) 86–92. [21] S. Afflerbach, M. Kappes, A. Gipperich, R. Trettin, W. Krumm, Semipermeable encapsulation of calcium hydroxide for thermochemical heat storage solutions, Sol. Energy 148 (2017) 1–11. [22] C. Roßkopf, M. Haas, A. Faik, M. Linder, A. Wörner, Improving Powder bed properties for thermochemical storage by adding nanoparticles, Energy Convers. Manag. 86 (2014) 93–98. [23] C. Roßkopf, S. Afflerbach, M. Schmidt, B. Görtz, T. Kowald, M. Linder, R. Trettin, Investigations of nano coated calcium hydroxide cycled in a thermochemical heat storage, Energy Convers. Manag. 97 (2015) 94–102. [24] Z.H. Pan, C.Y. Zhao, Gas-solid thermochemical heat storage reactors for high-temperature applications, Energy 130 (2017) 155–173. [25] F. Schaube, A. Kohzer, J. Schütz, A. Wörner, H. Müller-Steinhagen, De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part A: Experimental results, Chem. Eng. Res. Des. 91 (5) (2013) 856–864. [26] M. Schmidt, C. Szczukowski, C. Roßkopf, M. Linder, A. Wörner, Experimental results of a 10 kW high temperature thermochemical storage reactor based on calcium hydroxide, Appl. Therm. Eng. 62 (2) (2014) 553–559. [27] M. Schmidt, A. Gutierrez, M. Linder, Thermochemical energy storage with CaO/Ca(OH)2 - Experimental investigation of the thermal capability at low vapor pressures in a lab scale reactor, Appl. Energy 188 (2017) 672–681. [28] M. Schmidt, M. Linder, Power generation based on the Ca(OH)2/CaO thermochemical storage system - Experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design, Appl. Energy 203 (2017) 594–607. [29] J. Yan, C.Y. Zhao, Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage, Appl. Energy 175 (2016) 277–284. [30] M.N. Azpiazu, J.M. Morquillas, A. Vazquez, Heat recovery from a thermal energy storage based on the Ca(OH)2/CaO cycle, Appl. Therm. Eng. 23 (6) (2003) 733–741. [31] F. Schaube, I. Utz, A. Wörner, H. Müller-Steinhagen, De- and rehydration of Ca(OH)2 in a reactor with direct heat transfer for thermo-chemical heat storage. Part B: Validation of model, Chem. Eng. Res. Des. 91 (5) (2013) 865–873. [32] P. Pardo, Z. Anxionnaz-Minvielle, S. Rougé, P. Cognet, M. Cabassud, Ca(OH)2/CaO reversible reaction in a fluidized bed reactor for thermochemical heat storage, Sol. Energy 107 (2014) 605–616. [33] Y.A. Criado, M. Alonso, J.C. Abanades, Z. Anxionnaz-Minvielle, Conceptual process design of a CaO/Ca(OH)2 thermochemical energy storage system using fluidized bed reactors, Appl. Therm. Eng. 73 (1) (2014) 1087–1094. [34] S. Rougé, Y.A. Criado, O. Soriano, J.C. Abanades, Continuous CaO/Ca(OH)2 fluidized bed reactor for energy storage: First experimental results and reactor model validation, Ind. Eng. Chem. Res. 56 (4) (2017) 844–852. [35] Y.A. Criado, A. Huille, S. Rougé, J.C. Abanades, Experimental investigation and model validation of a CaO/Ca(OH)2 fluidized bed reactor for thermochemical energy storage applications, Chem. Eng. J. 313 (2017) 1194–1205. [36] J. Sunku Prasad, P. Muthukumar, F. Desai, D.N. Basu, M.M. Rahman, A critical review of high-temperature reversible thermochemical energy storage systems, Appl. Energy 254 (2019) 113733. [37] X.Y. Chen, X.G. Jin, Z.H. Zhang, D.Y. Song, X.A. Ling, Y. Wang, L.J. Zhu, Experimental investigation of CaCO3/CaO in a spiral coil reactor for thermochemical energy storage, Chem. Eng. J. 428 (2022) 131971. [38] F. Schaube, A. Wörner, R. Tamme, High temperature thermochemical heat storage for concentrated solar power using gas–solid reactions, J. Sol. Energy Eng. 133 (3) (2011) 1. [39] M. Xu, X.L. Huai, J. Cai, Agglomeration behavior of calcium hydroxide/calcium oxide as thermochemical heat storage material: A reactive molecular dynamics study, J. Phys. Chem. C 121 (5) (2017) 3025–3033. [40] J. Stengler, I. Bürger, M. Linder, Performance analysis of a gas-solid thermochemical energy storage using numerical and experimental methods, Int. J. Heat Mass Transf. 167 (2021) 120797. [41] Q. Ranjha, A. Oztekin, Numerical analyses of three-dimensional fixed reaction bed for thermochemical energy storage, Renew. Energy 111 (2017) 825–835. [42] R. Hyland, A. Wexler. Formulations for the thermodynamic properties of dry air (from 173.15 K to 473.15 K) and of saturated moist air (from 173.15 K to 372.15 K), at pressures to 5 MPa. ASHRAE J. 25 (1983) 64-64. [43] M.Y. Wang, L. Chen, P. He, W.Q. Tao, Numerical study and enhancement of Ca(OH)2/CaO dehydration process with porous channels embedded in reactors, Energy 181 (2019) 417–428. [44] J. Yan, C.Y. Zhao, Z.H. Pan, The effect of CO2 on Ca(OH)2 and Mg(OH)2 thermochemical heat storage systems, Energy 124 (2017) 114–123. |