[1] H.L. Tian, Y. Wang, Y.S. Pei, Energy capture from thermolytic solutions and simulated sunlight coupled with hydrogen peroxide production and wastewater remediation, Water Res. 170 (2020) 115318. [2] R. Niu, Y. Ding, L.A. Hao, J.X. Ren, J.A. Gong, J.P. Qu, Plant-mimetic vertical-channel hydrogels for synergistic water purification and interfacial water evaporation, ACS Appl. Mater. Interfaces 14 (40) (2022) 45533–45544. [3] H. Bai, P He, L. Hao, et al. Gong, J., Waste-treating-waste: Upcycling discarded polyester into metal–organic framework nanorod for synergistic interfacial solar evaporation and sulfate-based advanced oxidation process, Chem. Eng. J. 456 (2023) 140994–141008. [4] L.L. Zhong, X.X. Zhang, J.X. Ma, D.Q. Liu, D.M. Liu, Y. Wang, F.Y. Cui, W. Wang, Synergy of feed-side aeration and super slippery interface in membrane distillation for enhanced water flux and scaling mitigation, Water Res. 215 (2022) 118246. [5] Z.T. Li, X.T. Xu, X.R. Sheng, P. Lin, J. Tang, L.K. Pan, Y.V. Kaneti, T. Yang, Y. Yamauchi, Solar-powered sustainable water production: State-of-the-art technologies for sunlight–energy–water nexus, ACS Nano 15 (8) (2021) 12535–12566. [6] F. Nawaz, Y.W. Yang, S.H. Zhao, M.H. Sheng, C. Pan, W.X. Que, Innovative salt-blocking technologies of photothermal materials in solar-driven interfacial desalination, J. Mater. Chem. A 9 (30) (2021) 16233–16254. [7] C.J. Chen, Y.D. Kuang, S.Z. Zhu, I. Burgert, T. Keplinger, A. Gong, T. Li, L. Berglund, S.J. Eichhorn, L.B. Hu, Structure-property-function relationships of natural and engineered wood, Nat. Rev. Mater. 5 (9) (2020) 642–666. [8] X.Z. Zhao, C.K. Liu, Overcoming salt crystallization with ionic hydrogel for accelerating solar evaporation, Desalination 482 (2020) 114385. [9] J.H. Feng, S. Xiong, L. Ren, Y. Wang, Atomic layer deposition of TiO2 on carbon-nanotubes membrane for capacitive deionization removal of chromium from water, Chin. J. Chem. Eng. 45 (2022) 15–21. [10] J.X. He, Z. Zhang, C.H. Xiao, F. Liu, H.X. Sun, Z.Q. Zhu, W.D. Liang, A. Li, High-performance salt-rejecting and cost-effective superhydrophilic porous monolithic polymer foam for solar steam generation, ACS Appl. Mater. Interfaces 12 (14) (2020) 16308–16318. [11] M.A.U. Olea, J. de Jesús Pérez Bueno, A.X.M. Pérez, Nanometric and surface properties of semiconductors correlated to photocatalysis and photoelectrocatalysis applied to organic pollutants - A review, J. Environ. Chem. Eng. 9 (6) (2021) 106480. [12] X.Y. Meng, J.H. Yang, S. Ramakrishna, Y.M. Sun, Y.Q. Dai, Gradient vertical channels within aerogels based on N-doped graphene meshes toward efficient and salt-resistant solar evaporation, ACS Sustainable Chem. Eng. 8 (12) (2020) 4955–4965. [13] Y. Zhang, T. Xiong, D.K. Nandakumar, S.C. Tan, Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation, Adv. Sci. 7 (9) (2020) 1903478. [14] K.Y. Xu, C.B. Wang, Z.T. Li, S.M. Wu, J.L. Wang, Salt mitigation strategies of solar-driven interfacial desalination, Adv. Funct. Mater. 31 (8) (2021) 2007855. [15] L. Biswal, R. Mohanty, S. Nayak, K. Parida, Review on MXene/TiO2 nanohybrids for photocatalytic hydrogen production and pollutant degradations, J. Environ. Chem. Eng. 10 (2) (2022) 107211. [16] M.L. Li, M. Wang, L.F. Zhu, Y.M. Li, Z. Yan, Z.Q. Shen, X.B. Cao, Facile microwave assisted synthesis of N-rich carbon quantum dots/dual-phase TiO2 heterostructured nanocomposites with high activity in CO2 photoreduction, Appl. Catal. B 231 (2018) 269–276. [17] C. Zhao, Y.H. Ye, X.F. Chen, X.W. Da, M.H. Qiu, Y.Q. Fan, Charged modified tight ceramic ultrafiltration membranes for treatment of cationic dye wastewater, Chin. J. Chem. Eng. 41 (2022) 267–277. [18] J. Wu, X.B. Cao, Growth of bismuth oxyhalide nanoplates on self-standing TiO2 nanowire film exhibiting enhanced photoelectrochemical performances, Electrochim. Acta 247 (2017) 646–656. [19] S. Seo, S. Shin, E. Kim, S. Jeong, N.G. Park, H. Shin, Amorphous TiO2 coatings stabilize perovskite solar cells, ACS Energy Lett. 6 (9) (2021) 3332–3341. [20] S.K. Loeb, P.J.J. Alvarez, J.A. Brame, E.L. Cates, W. Choi, J. Crittenden, D.D. Dionysiou, Q.L. Li, G. Li-Puma, X.E. Quan, D.L. Sedlak, T. David Waite, P. Westerhoff, J.H. Kim, The technology horizon for photocatalytic water treatment: Sunrise or sunset? Environ. Sci. Technol. 53 (6) (2019) 2937–2947. [21] Z. Zhang, J.Y. Sun, X. Chen, G.Z. Wu, Z.G. Jin, D.G. Guo, L. Liu, The synergistic effect of enhanced photocatalytic activity and photothermal effect of oxygen-deficient Ni/reduced graphene oxide nanocomposite for rapid disinfection under near-infrared irradiation, J. Hazard. Mater. 419 (2021) 126462. [22] Z. Zhang, P. Mu, J.X. He, Z.Q. Zhu, H.X. Sun, H.J. Wei, W.D. Liang, A. Li, Facile and scalable fabrication of surface-modified sponge for efficient solar steam generation, ChemSusChem 12 (2) (2019) 426–433. [23] W. Zhang, Q. Chang, C.R. Xue, J.L. Yang, S.L. Hu, A gelation-stabilized strategy toward photothermal architecture design for highly efficient solar water evaporation, Sol. RRL 5 (5) (2021) 2100133. [24] M.M. Gao, L.L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production, Energy Environ. Sci. 12 (3) (2019) 841–864. [25] P. Mu, Z. Zhang, W. Bai, J.X. He, H.X. Sun, Z.Q. Zhu, W.D. Liang, A. Li, Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation, Adv. Energy Mater. 9 (1) (2019) 1802158. [26] X.B. Cao, D.P. Qi, S.Y. Yin, J. Bu, F.J. Li, C.F. Goh, S. Zhang, X.D. Chen, Ambient fabrication of large-area graphene films via a synchronous reduction and assembly strategy, Adv. Mater. 25 (21) (2013) 2957–2962. [27] L. Song, X.B. Cao, L. Li, Q.D. Wang, H.T. Ye, L. Gu, C.J. Mao, J.M. Song, S.Y. Zhang, H.L. Niu, General method for large-area films of carbon nanomaterials and application of a self-assembled carbon nanotube film as a high-performance electrode material for an all-solid-state supercapacitor, Adv. Funct. Mater. 27 (21) (2017) 1700474. [28] Y.L. Yu, S. Chen, Y. Jia, T. Qi, L. Xiao, X. Cui, D.M. Zhuang, J.Q. Wei, Ultra-black and self-cleaning all carbon nanotube hybrid films for efficient water desalination and purification, Carbon 169 (2020) 134–141. [29] L. Dai, F.Z. Sun, Q.W. Fan, H.T. Li, K. Yang, T.Y. Guo, L. Zheng, P. Fu, Carbon-based titanium dioxide materials for hydrogen production in water-methanol reforming: A review, J. Environ. Chem. Eng. 10 (2) (2022) 107326. [30] H.M. Huang, Z.L. Wang, B. Luo, P. Chen, T.E. Lin, M. Xiao, S.C. Wang, B.Y. Dai, W. Wang, J.H. Kou, C.H. Lu, Z.Z. Xu, L.Z. Wang, Design of twin junction with solid solution interface for efficient photocatalytic H2 production, Nano Energy 69 (2020) 104410. [31] L.J. Lu, W.Q. Ding, J.Q. Liu, B. Yang, Flexible PVDF based piezoelectric nanogenerators, Nano Energy 78 (2020) 105251. [32] C.C. Li, X.Y. Chen, J.E. Luo, F. Wang, G.J. Liu, H.L. Zhu, Y.H. Guo, PVDF grafted Gallic acid to enhance the hydrophilicity and antibacterial properties of PVDF composite membrane, Sep. Purif. Technol. 259 (2021) 118127. [33] Y.X. Wu, Y. Li, Y. Wang, Q. Liu, Q.G. Chen, M.H. Chen, Advances and prospects of PVDF based polymer electrolytes, J. Energy Chem. 64 (2022) 62–84. [34] L.W. Zhu, H.X. Li, Z.G. Ren, H.F. Wang, W. Yao, J.P. Lang, Engineering growth of TiO2 nanofibers on NiO–Ni foam with cleaning and separation functions, RSC Adv. 3 (35) (2013) 15421. [35] C.H. Park, C.M. Lee, J.W. Choi, G.C. Park, J. Joo, Enhanced photocatalytic activity of porous single crystal TiO2/CNT composites by annealing process, Ceram. Int. 44 (2) (2018) 1641–1645. [36] E. Assayehegn, A. Solaiappan, Y. Chebude, E. Alemayehu, Fabrication of tunable anatase/rutile heterojunction N/TiO2 nanophotocatalyst for enhanced visible light degradation activity, Appl. Surf. Sci. 515 (2020) 145966. [37] C. Alberoni, I. Barroso-Martín, A. Infantes-Molina, E. Rodríguez-Castellón, A. Talon, H.G. Zhao, S.J. You, A. Vomiero, E. Moretti, Ceria doping boosts methylene blue photodegradation in titania nanostructures, Mater. Chem. Front. 5 (11) (2021) 4138–4152. [38] C.T. Hsieh, Y.C. Chen, Y.F. Chen, M.M. Huq, P.Y. Chen, B.S. Jang, Microwave synthesis of titania-coated carbon nanotube composites for electrochemical capacitors, J. Power Sources 269 (2014) 526–533. [39] S. Bellamkonda, N. Thangavel, H.Y. Hafeez, B. Neppolian, G. Ranga Rao, Highly active and stable multi-walled carbon nanotubes-graphene-TiO2 nanohybrid: An efficient non-noble metal photocatalyst for water splitting, Catal. Today 321-322 (2019) 120–127. [40] H.M. Mousa, J.F. Alenezi, I.M.A. Mohamed, A.S. Yasin, A.F M. Hashem, A. Abdal-hay, Synthesis of TiO2@ZnO heterojunction for dye photodegradation and wastewater treatment, J. Alloys Compd. 886 (2021) 161169. [41] C.J. Yoon, S.H. Lee, Y.B. Kwon, K. Kim, K.H. Lee, S.M. Kim, Y.K. Kim, Fabrication of sustainable and multifunctional TiO2@carbon nanotube nanocomposite fibers, Appl. Surf. Sci. 541 (2021) 148332. [42] F.Y. Liu, H. Cao, L.Y. Xu, H. Fu, S.Y. Sun, Z.J. Xiao, C.H. Sun, X. Long, Y.Q. Xia, S.J. Wang, Design and preparation of highly active TiO2 photocatalysts by modulating their band structure, J. Colloid Interface Sci. 629 (Pt B) (2022) 336–344. [43] Y.Y. Wu, C.Y. Dang, J. Wu, M.L. Li, M.M. Chu, L. Gu, X.B. Cao, A photothermal system for wastewater disposal and co-generation of clean water and electricity, J. Environ. Chem. Eng. 10 (1) (2022) 107124. [44] Y.X. Chen, J.H. Qian, N. Wang, J.J. Xing, L. Liu, In-situ synthesis of CNT/TiO2 heterojunction nanocomposite and its efficient photocatalytic degradation of Rhodamine B dye, Inorg. Chem. Commun. 119 (2020) 108071. [45] D.D. Hao, Y.D. Yang, B. Xu, Z.S. Cai, Bifunctional fabric with photothermal effect and photocatalysis for highly efficient clean water generation, ACS Sustainable Chem. Eng. 6 (8) (2018) 10789–10797. [46] J.H. Zhou, Y.F. Gu, P.F. Liu, P.F. Wang, L. Miao, J. Liu, A.Y. Wei, X.J. Mu, J.L. Li, J. Zhu, Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions, Adv. Funct. Mater. 29 (50) (2019) 1903255. [47] K. Fang, C. Du, J.S. Zhang, C. Zhou, S.Y. Yang, Molecular engineering of a synergistic photocatalytic and photothermal membrane for highly efficient and durable solar water purification, J. Membr. Sci. 663 (2022) 121037. [48] L.W. Zhang, X.Y. Zhang, J. Wu, D.K. Zhao, H. Fu, Rockburst prediction model based on comprehensive weight and extension methods and its engineering application, Bull. Eng. Geol. Environ. 79 (9) (2020) 4891–4903. [49] Y. Li, Q.Q. Shen, R.F. Guan, J.B. Xue, X.G. Liu, H.S. Jia, B.S. Xu, Y.C. Wu, A C@TiO2 yolk–shell heterostructure for synchronous photothermal–photocatalytic degradation of organic pollutants, J. Mater. Chem. C 8 (3) (2020) 1025–1040. [50] P.P. He, H.Y. Bai, Z.F. Fan, L.A. Hao, N. Liu, B.Y. Chen, R. Niu, J.A. Gong, Controllable synthesis of N/Co-doped carbon from metal–organic frameworks for integrated solar vapor generation and advanced oxidation processes, J. Mater. Chem. A 10 (25) (2022) 13378–13392. [51] A. Dana, S. Sheibani, CNTs-copper oxide nanocomposite photocatalyst with high visible light degradation efficiency, Adv. Powder Technol. 32 (10) (2021) 3760–3769. [52] J. Abdi, F. Banisharif, A. Khataee, Amine-functionalized Zr-MOF/CNTs nanocomposite as an efficient and reusable photocatalyst for removing organic contaminants, J. Mol. Liq. 334 (2021) 116129. [53] M. Guo, Y.L. Hu, R. Wang, H.W. Yu, L.P. Sun, Molecularly imprinted polymer-based photocatalyst for highly selective degradation of methylene blue, Environ. Res. 194 (2021) 110684. [54] F.Y. Yan, W. Li, J.L. Zhang, Simultaneous synthesis of heat-integrated water networks by a nonlinear program: Considering the wastewater regeneration reuse, Chin. J. Chem. Eng. 44 (2022) 402–411. |