[1] Qingjie, Wang, Design of solvent mixtures for removal of phenol from wastewater using a non-linear programming model with a multi-start method, Emerg. Contam. 8 (2022) 39–45. [2] G. Busca, S. Berardinelli, C. Resini, L. Arrighi, Technologies for the removal of phenol from fluid streams: A short review of recent developments, J. Hazard. Mater. 160 (2–3) (2008) 265–288. [3] D. Naidu, N. Panigrahi, J. Mishra, N. Sahoo, Assessing the potential of mesoporous MCM-41 nanoparticles for treatment of phenolic wastewater, Int. J. Nano Biomater. 7 (2) (2017) 124. [4] N.J. Li, J. Jiang, D.Y. Chen, Q.F. Xu, H. Li, J.M. Lu, A reusable immobilization matrix for the biodegradation of phenol at 5000 mg/L, Sci. Rep. 5 (2015) 8628. [5] Z.X. Wu, D.Y. Zhao, Ordered mesoporous materials as adsorbents, Chem. Commun. 47 (12) (2011) 3332–3338. [6] Yun, Qu, Magnetic Fe3O4/ZIF-8 composite as an effective and recyclable adsorbent for phenol adsorption from wastewater, Sep. Purif. Technol. 294 (2022) 121169. [7] X.D. Zhao, M.Q. Zheng, X.L. Gao, J. Zhang, E.B. Wang, Z.Q.Gao, The application of MOFs-based materials for antibacterials adsorption, Coord. Chem. Rev. 440 (2021) 213970. [8] Sufang, Song, Isomerous Al-BDC-NH2 metal-organic frameworks for metronidazole removal: Effect of topology structure, J. Solid State Chem. 314 (2022) 123376. [9] B. Mudyawabikwa, H.H. Mungondori, L. Tichagwa, D.M. Katwire, Methylene blue removal using a low-cost activated carbon adsorbent from tobacco stems: Kinetic and equilibrium studies, Water Sci. Technol. 75 (10) (2017) 2390–2402. [10] Edidiong, Asuquo, Martin, Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies, J. Environ. Chem. Eng. 5 (1) (2017) 679–698. [11] N.B. Azmi, M.J.K. Bashir, S. Sethupathi, C.A.Ng, Anaerobic stabilized landfill leachate treatment using chemically activated sugarcane bagasse activated carbon: Kinetic and equilibrium study, Desalination Water Treat. 57 (9) (2016) 3916–3927. [12] X.D. Zhao, M.Q. Zheng, X.L. Gao, Z.Q. Gao, H.L. Huang, Construction of an anionic porous framework via a post-synthesis strategy to regulate the adsorption behavior of organic pollutants, J. Mater. Sci.55 (30) (2020) 14751–14760. [13] N.A. Rashidi, S. Yusup, Potential of palm kernel shell as activated carbon precursors through single stage activation technique for carbon dioxide adsorption, J. Clean. Prod. 168 (2017) 474–486. [14] K. Wilson, H. Yang, C.W. Seo, W.E.Marshall, Select metal adsorption by activated carbon made from peanut shells, Bioresour. Technol. 97 (18) (2006) 2266–2270. [15] Q.Q. Miao, Y.M. Tang, J. Xu, X.P. Liu, L.R. Xiao, Q.H.Chen, Activated carbon prepared from soybean straw for phenol adsorption, J. Taiwan. Inst. Chem. Eng. 44 (3) (2013) 458–465. [16] E.R. Abaide, G.L. Dotto, M.V. Tres, G.L. Zabot, M.A.Mazutti, Adsorption of 2-nitrophenol using rice straw and rice husks hydrolyzed by subcritical water, Bioresour. Technol. 284 (2019) 25–35. [17] S. Wang, Y.R. Lee, H. Kim, Y. Won, S.E. Jeong, D.H. Lee, J.Y. Kim, S.H. Jo, H. Kim, Y.C. Park, H.Nam, Development of high-performance adsorbent using KOH-impregnated rice husk-based activated carbon for indoor CO2 adsorption, Chem. Eng. J. 437(2022) 135378. [18] Songlei, Lv, A functional activated carbon for efficient adsorption of phenol derived from pyrolysis of rice husk, KOH-activation and EDTA-4Na-modification, Appl. Surf. Sci. 510 (2020) 145425. [19] E. Barea, C. Montoro, J.A.R. Navarro, Toxic gas removal-metal-organic frameworks for the capture and degradation of toxic gases and vapours, Chem. Soc. Rev. 43 (16) (2014) 5419–5430. [20] Yu-Hang, Li, Seignette salt induced defects in Zr-MOFs for boosted Pb(Ⅱ) adsorption: Universal strategy and mechanism insight, Chem. Eng. J. 442 (2022) 136276. [21] X. Ren, C. Wang, Y. Li, P. Wang, S. Gao, Defective SO3H-MIL-101(Cr) for capturing different cationic metal ions: Performances and mechanisms. Journal of Hazardous Materials 445(2023) 130552. [22] S.J. Shi, Y.Y. Cui, N. Jiang, B.L. Jiang, Fabrication of a metal-organic framework composite modified with biomass activated carbon (BAC) and functionalized with NH2 for efficient p-nitrophenol adsorption, ChemistrySelect 7 (11) (2022) e202104008. [23] D.D. Feng, D.W. Guo, Y. Zhang, S.Z. Sun, Y.J. Zhao, Q. Shang, H.L. Sun, J.Q. Wu, H.P.Tan, Functionalized construction of biochar with hierarchical pore structures and surface O-/N-containing groups for phenol adsorption, Chem. Eng. J. 410 (2021) 127707. [24] J.M. Park, H.S. Jhung, A remarkable adsorbent for removal of bisphenol S from water: Aminated metal-organic framework, MIL-101-NH2, Chem. Eng. J. 396 (2020) 125224. [25] B.J. Liu, F. Yang, Y.X. Zou, Y.Peng, Adsorption of phenol and p-nitrophenol from aqueous solutions on metal-organic frameworks: Effect of hydrogen bonding, J. Chem. Eng. Data 59 (5) (2014) 1476–1482. [26] M. Reda, Abdelhameed, Cu-BTC metal-organic framework natural fabric composites for fuel purification, Fuel Process. Technol. 159 (2017) 306–312. [27] L.H. Qi, H.L. Jiang, T.N. Lin, X.Y. Chang, B.L. Jiang, Fabrication of MIL-53(Al) based composites from biomass activated carbon (AC) for efficient p-nitrophenol adsorption from aqueous solution, J. Taiwan. Inst. Chem. Eng. 127 (2021) 220–227. [28] B. Seoane, C. Téllez, J. Coronas, C. Staudt, NH2-MIL-53(Al) and NH2-MIL-101(Al) in sulfur-containing copolyimide mixed matrix membranes for gas separation, Sep. Purif. Technol. 111 (2013) 72–81. [29] M. Al Sharabati, R.Sabouni, Selective removal of dual dyes from aqueous solutions using a metal organic framework (MIL-53(Al)), Polyhedron 190 (2020) 114762. [30] A.M. Aldawsari, I.H. Alsohaimi, H.M.A. Hassan, M.R. Berber, Z.E.A. Abdalla, I. Hassan, E.A.M. Saleh, B.H.Hameed, Activated carbon/MOFs composite: AC/NH2-MIL-101(Cr), synthesis and application in high performance adsorption of p-nitrophenol, J. Saudi Chem. Soc. 24 (9) (2020) 693–703. [31] X.P. Quan, Z.Q. Sun, J.L. Xu, S.Y. Liu, Y.D. Han, Y. Xu, H. Meng, J.B. Wu, X.Zhang, Construction of an aminated MIL-53(Al)-functionalized carbon nanotube for the efficient removal of bisphenol AF and metribuzin, Inorg. Chem. 59 (5) (2020) 2667–2679. [32] L.L. Liu, X.S. Tai, N.N. Zhang, Q.G. Meng, C.L. Xin, Supported Au/MIL-53(Al): A reusable green solid catalyst for the three-component coupling reaction of aldehyde, alkyne, and amine, Reac Kinet Mech Cat 119 (1) (2016) 335–348. [33] Y.M. Zhang, Z.Q. Ma, Q.S. Zhang, J.Y. Wang, Q.Q. Ma, Y.Y. Yang, X.P. Luo, W.G.Zhang, Comparison of the physicochemical characteristics of bio-char pyrolyzed from moso bamboo and rice husk with different pyrolysis temperatures, BioResources 12 (3) (2017): 4652–4669. [34] W.P. Xiong, Z.T. Zeng, X. Li, G.M. Zeng, R. Xiao, Z.H. Yang, Y.Y. Zhou, C. Zhang, M. Cheng, L. Hu, C.Y. Zhou, L. Qin, R. Xu, Y.R.Zhang, Multi-walled carbon nanotube/amino-functionalized MIL-53(Fe) composites: Remarkable adsorptive removal of antibiotics from aqueous solutions, Chemosphere 210 (2018) 1061–1069. [35] B.L. Jiang, T.H. Zhu, N. Jiang, M.Y. Gong, G. Yang, F. Li, H. Song, T.Z.Hao, Ultra-deep adsorptive removal over hierarchically structured AgCeY zeolite from model gasoline with high competitor content, J. Clean. Prod. 297 (2021) 126582. [36] T. Boontongto, R. Burakham, Evaluation of metal-organic framework NH2-MIL-101(Fe) as an efficient sorbent for dispersive micro-solid phase extraction of phenolic pollutants in environmental water samples, Heliyon 5 (11) (2019) e02848. [37] M.P. Li, Y.Y. Wang, Y.X. Liu, H. Wang, H. Song, Preparation of active carbon through one-step NaOH activation of coconut shell biomass for phenolic wastewater treatment, Res Chem Intermed 48 (4) (2022) 1665–1684. [38] W.M. Zhang, Z.W. Xu, B.C. Pan, Q.J. Zhang, W. Du, Q.R. Zhang, K. Zheng, Q.X. Zhang, J.L.Chen, Adsorption enhancement of laterally interacting phenol/aniline mixtures onto nonpolar adsorbents, Chemosphere 66 (11) (2007) 2044–2049. [39] Y.L. Xiao, T.T. Han, G. Xiao, Y.P. Ying, H.L. Huang, Q.Y. Yang, D.H. Liu, C.L.Zhong, Highly selective adsorption and separation of aniline/phenol from aqueous solutions by microporous MIL-53(Al): A combined experimental and computational study, Langmuir 30 (41) (2014) 12229–12235. |