[1] H. Schobert, Production of acetylene and acetylene-based chemicals from coal, Chem. Rev. 114 (3) (2014) 1743–1760. [2] Ullmann’s Encyclopedia of Industrial Chemistry. [3] J.R. Fincke, R.P. Anderson, T. Hyde, B.A. Detering, R. Wright, R.L. Bewley, D.C. Haggard, W.D. Swank, Plasma thermal conversion of methane to acetylene, Plasma Chem. Plasma Process. 22 (1) (2002) 105–136. [4] R.L. Bond, I.F. Galbraith, W.R. Ladner, G.I.T. McConnell, Production of acetylene from coal, using a plasma jet, Nature 200 (4913) (1963) 1313–1314. [5] D.K. Dinh, D.H. Lee, Y.H. Song, S. Jo, K.T. Kim, M. Iqbal, H. Kang, Efficient methane-to-acetylene conversion using low-current arcs, RSC Adv. 9 (56) (2019) 32403–32413. [6] B.H. Yan, P.C. Xu, C.Y. Guo, Y. Jin, Y. Cheng, Experimental study on coal pyrolysis to acetylene in thermal plasma reactors, Chem. Eng. J. 207-208 (2012) 109–116. [7] C.N. Wu, J.Q. Chen, Y. Cheng, Thermodynamic analysis of coal pyrolysis to acetylene in hydrogen plasma reactor, Fuel Process. Technol. 91 (8) (2010) 823–830. [8] R. Nicholson, K. Littlewood, Plasma pyrolysis of coal, Nature 236 (5347) (1972) 397–400. [9] P. Tang, Q.J. Zhu, Z.X. Wu, D. Ma, Methane activation: The past and future, Energy Environ. Sci. 7 (8) (2014) 2580–2591. [10] Y.J. Tian, K.C. Xie, S.Y. Zhu, T.H. Fletcher, Simulation of coal pyrolysis in plasma jet by CPD model, Energy Fuels 15 (6) (2001) 1354–1358. [11] Y.E. Shuang, C.N. Wu, B.H. Yan, Y. Cheng, Heat transfer inside particles and devolatilization for coal pyrolysis to acetylene at ultrahigh temperatures, Energy Fuels 24 (5) (2010) 2991–2998. [12] A. Holmen, O.A. Rokstad, A. Solbakken, High-temperature pyrolysis of hydrocarbons. 1. methane to acetylene, Ind. Eng. Chem. Proc. Des. Dev. 15 (3) (1976) 439–444. [13] H. Leutner, C. Stokes, Producing acetylene in a plasma jet, Ind. Eng. Chem. 53 (5) (1961) 341–342. [14] S.C. Chakravartty, D. Dutta, A. Lahiri, Reaction of coals under plasma conditions: Direct production of acetylene from coal, Fuel 55 (1) (1976) 43–46. [15] J.Q. Chen, Y. Cheng, X.Y. Xiong, C.N. Wu, Y. Jin, Research progress of coal pyrolysis to acetylene in thermal plasma reactor, Chem. Ind. Eng. Prog. 28 (3) (2009) 361–367. [16] B.H. Yan, W. Lu, Y. Cheng, China goes green: Cleaner production of chemicals, Green Process. Synth. 1 (1) (2012): 361–367. [17] J.Q. Chen, Y. Cheng, Process development and reactor analysis of coal pyrolysis to acetylene in hydrogen plasma reactor, J. Chem. Eng. Japan 42 (Supplement.) (2009) S103–S110. [18] B.H. Yan, Y. Cheng, Y. Jin, Cross-scale modeling and simulation of coal pyrolysis to acetylene in hydrogen plasma reactors, AlChE. J. 59 (6) (2013) 2119–2133. [19] R.F. Baddour, J.M. Iwasyk, Reactions between elemental carbon and hydrogen at temperatures above 2800° K, Ind. Eng. Chem. Proc. Des. Dev. 1 (3) (1962) 169–176. [20] A. Holmen, O. Olsvik, O.A. Rokstad, Pyrolysis of natural gas: Chemistry and process concepts, Fuel Process. Technol. 42 (2–3) (1995) 249–267. [21] C.J. Liu, R. Mallinson, L. Lobban, Nonoxidative methane conversion to acetylene over zeolite in a low temperature plasma, J. Catal. 179 (1) (1998) 326–334. [22] F.G. Billaud, F. Baronnet, C.P. Gueret, Thermal coupling of methane in a tubular flow reactor: Parametric study, Ind. Eng. Chem. Res. 32 (8) (1993) 1549–1554. [23] H.S. Kang, D.H. Lee, K.T. Kim, S. Jo, S. Pyun, Y.H. Song, S. Yu, Methane to acetylene conversion by employing cost-effective low-temperature arc, Fuel Process. Technol. 148 (2016) 209–216. [24] W.Q. Lu, R.J. Zhang, S. Toan, R. Xu, F.Y. Zhou, Z. Sun, Z.Q. Sun, Microchannel structure design for hydrogen supply from methanol steam reforming, Chem. Eng. J. 429 (2022) 132286. [25] F. Basile, P. Benito, G. Fornasari, A. Vaccari, Hydrotalcite-type precursors of active catalysts for hydrogen production, Appl. Clay Sci. 48 (1–2) (2010) 250–259. [26] R.B. Zhang, Z.A. Tu, S. Meng, G. Feng, Z.H. Lu, Y.Z. Yu, T.R. Reina, F.Y. Hu, X.H. Chen, R.P. Ye, Engineering morphologies of yttrium oxide supported nickel catalysts for hydrogen production, Rare Met. 42 (1) (2023) 176–188. |