1 Liu, Z.Q., Mao, Z.Q., Xu, J.M., “Operation conditions optimization of hydrogen production by propane autothermal reforming for PEMFC applications”, Chin. J. Chem. Eng., 14, 729-735 (2006). 2 Wang, Z.L., Diao, J., Wang, J.F., Jing, Y., “Study on synergy effect in dimethyl ether synthesis from syngas”, Chin. J. Chem. Eng., 9,412-416 (2001). 3 Tanaka, Y., Kikuchi, R., Takeguchi, T., Equchi, K., “Steam reforming of dimethyl ether over composite catalysts of γAl2O3 and Cubased spinel”, Appl. Catal. B Environ., 57, 211-222 (2005). 4 Faungnawakij, K., Tanaka, Y., Shimoda, N., Fukunaga, T., Kawashima, S., Kikuchi, R., Eguchi, K., “Influence of solid-acid catalysts on steam reforming and hydrolysis of dimethyl ether for hydrogen production”, Appl. Catal. A Gen., 304, 40-48 (2006). 5 Semelsberger, T.A., Ott, K.C., Borup, R.L., Greene, H.L., “Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using Cu/Zn supported on various solid-acid substrates”, Appl. Catal. A Gen., 309, 210-223 (2006). 6 Kawabata, T., Matsuoka, H., Shishido, T., Li, D., Tian, Y., Sano, T., Takehira, K., “Steam reforming of dimethyl ether over ZSM-5 coupled with Cu/ZnO/Al2O3 catalyst prepared by homogeneous precipitation”, Appl. Catal. A Gen., 308, 82-90 (2006). 7 Semelsberger, T.A., Ott, K.C., Borup, R.L., Greene, H.L., “Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using physical mixtures of a commercial Cu/Zn/Al2O3 catalyst and several solid-acid catalysts”, Appl. Catal. A Gen., 65, 291-300 (2006). 8 Faungnawakij, K., Tanaka, Y., Shimoda, N., Fukunaqa, T., Kikuchi, R., Equchi, K., “Hydrogen production from dimethyl ether steam reforming over composite catalysts of copper ferrite spinel and alumina”, Appl. Catal. B Environ., 74, 144-151 (2007). 9 Laosiripojana, N., Assaburnrngrat, S., “Catalytic steam reforming of dimethyl ether (DME) over high surface area Ce-ZrO2 at SOFC temperature: The possible use of DME in indirect internal reforming operation (IIR-SOFC)”, Appl. Catal. A Gen., 320, 105-113 (2007). 10 Takeishi, K., Suzuki, H., “Steam reforming of dimethyl ether”, Appl. Catal. A Gen., 260, 111-117 (2004). 11 Badmaev, S.D., Volkova, G.G., Belyaev, V.D., Sobyanin, V.A., “Steam reforming of dimethyl ether to hydrogen-rich gas”, Reac. Kinet. Catal. Lett., 90, 205-211 (2007). 12 Semelsberger, T.A., Borup, R.L., “Thermodynamic equilibrium calculations of dimethyl ether steam reforming and dimethyl ether hydrolysis”, J. Power Sources., 152, 87-96 (2005). 13 Faungnawakij, K., Tanaka, Y., Shimoda, N., Fukunaqa, T., Kikuchi, R., Equchi, K., “Thermodynamic analysis of carbon formation boundary and reforming performance for steam reforming of dimethyl ether”, J. Power Sources., 164, 7-79 (2007). 14 Agell, J., Birgersson, H., Boutonnet, M., “Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation”, J. Power Sources., 106,249-257 (2002). 15 Peppley, B.A., Amphlett, J.C., Kearns, L.M., “ Methanol-steam reforming on Cu/ZnO/Al2O3 . Part 1: the reaction network”, Appl. Catal. A Gen., 197, 21-29 (1999). 16 Peppley, B.A., Amphlett, J.C., Kearns, L.M., “ Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model”, Appl. Catal. A Gen., 197, 31-49 (1999). 17 Jiang, C.J., Trimm, D.L., Wainwright, M.S., “Kinetic study of steam reforming of methanol over copper-based catalysts”, Appl. Catal. A Gen., 97, 145-158 (1993). 18 Mastalir, A., Frank, B., Szizybalski, A., Soerijanto, H., Deshpande, A., Niederbergere, M., Schomacker, R., Schlogl, R., Ressler, T., “Steam reforming of methanol over Cu/ZrO2 /CeO2 catalysts: a kinetic study”, J. Catal., 230, 464-475 (2005). 19 Agrell, J., Birgersson, H., Boutonnet, M., “Steam reforming of methanol over a Cu/ZnO/Al2O3 catalysts: a kinetic analysis and strategies for suppression of CO formation”, J. Power Sources., 106,249-257 (2002). 20 Xie, F., Li, H.S., Zhao, X.L., “Adsorption and dehydration of methanol on Al2O3 catalyst”, Chin. J. Catal., 25, 403-408 (2004). (in Chinese) 21 Wang, Z.L., Wang, J.F., Diao, J., Jin, Y., “The synergy effect of process coupling for dimethyl ether synthesis in slurry reactors”, Chem. Eng. Tech., 24, 507-511 (2001). 22 Ren, F., Li, H.S., Wang, J.F., Wang, D.Z., “Methanol synthesis from syngas in a slurry reactor”, In: 226th National Meeting of the American Chemical Society, 575 (2003). 23 An, X., F, Ren., Li, J.L., Wang, D.Z., Wang, J.F., “A highly active Cu/ZnO/Al2O3 nanofiber catalyst for methanol synthesis through CO2 and CO hydrogenation”, Chin. J. Catal., 26, 729-735 (2005). (in Chinese) 24 An, X., Li, J.L., Zuo, Y.Z., Zhang, Q., Wang, D.Z., Wang, J.F., “A CuO-ZnO-Al2O3 -ZrO2 fibrous catalyst that is an improved CO2 hydrogenation to methanol catalyst”, Catal. Lett., 118, 264-269 (2007). 25 Chen, J.H., Li, W.Z., Wang, D.Z., “Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors”, Carbon, 40, 1193-1197 (2002). 26 Wang, D.Z., Wei, F., Wang, J.F., “Method and apparatus to measure gas amounts adsorbed on a powder sample”, US Pat., 6981426 (2006) 27 Faungnawakij, K., Tanaka, Y., Shimoda, N., Fukunaqa, T., Kikuchi, R., Equchi, K., “A comparative study of solid acids in hydrolysis and steam reforming of dimethyl ether”, Appl. Catal. A Gen., 333,114-121 (2007). |