中国化学工程学报 ›› 2024, Vol. 66 ›› Issue (2): 298-309.DOI: 10.1016/j.cjche.2023.10.006
• Full Length Article • 上一篇 下一篇
Hao Yuan1, Xinhai Sun2, Shuai Zhang1, Weilong Shi1, Feng Guo2
收稿日期:
2023-06-14
修回日期:
2023-10-04
出版日期:
2024-02-28
发布日期:
2024-04-20
通讯作者:
Weilong Shi,E-mail:shiwl@just.edu.cn;Feng Guo,E-mail:gfeng0105@126.com
基金资助:
Hao Yuan1, Xinhai Sun2, Shuai Zhang1, Weilong Shi1, Feng Guo2
Received:
2023-06-14
Revised:
2023-10-04
Online:
2024-02-28
Published:
2024-04-20
Contact:
Weilong Shi,E-mail:shiwl@just.edu.cn;Feng Guo,E-mail:gfeng0105@126.com
Supported by:
摘要: The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater. Herein, carbon dots (CDs) modified MIL-101(Fe) octahedrons to form CDs/MIL-101(Fe) composite photocatalyst was synthesized for visible light–driven photocatalytic/persulfate(PS)-activated tetracycline(TC) degradation. The electron spin resonance (ESR) spectra, scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light–driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe) photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system (·OH, ·SO, 1O2, h and ·O2-)but also attributed to the consumption of electrons caused by the PS, which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs. Finally, the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography–mass spectrometrytechnique. This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts.
Hao Yuan, Xinhai Sun, Shuai Zhang, Weilong Shi, Feng Guo. Achieving high-efficient photocatalytic persulfate-activated degradation of tetracycline via carbon dots modified MIL-101(Fe) octahedrons[J]. 中国化学工程学报, 2024, 66(2): 298-309.
Hao Yuan, Xinhai Sun, Shuai Zhang, Weilong Shi, Feng Guo. Achieving high-efficient photocatalytic persulfate-activated degradation of tetracycline via carbon dots modified MIL-101(Fe) octahedrons[J]. Chinese Journal of Chemical Engineering, 2024, 66(2): 298-309.
[1] L.W. Wang, Z.W. Yang, G.X. Song, Z. You, X.Y. Zhang, L. Liu, J. Zhang, L.H. Ding, N. Ren, A.Z. Wang, J. Liu, H. Liu, X. Yu, Construction of S-N-C bond for boosting bacteria-killing by synergistic effect of photocatalysis and nanozyme, Appl. Catal. B 325(2023)122345. [2] L.J. Nguetsa Kuate, Z.Z. Chen, J.L. Lu, H.B. Wen, F. Guo, W.L. Shi, Photothermal-assisted photocatalytic degradation of tetracycline in seawater based on the black g-C3N4 nanosheets with cyano group defects, Catalysts 13(7)(2023)1147. [3] X.H. Sun, Z.Z. Chen, Y. Shen, J.L. Lu, Y.X. Shi, Y.H. Cui, F. Guo, W.L. Shi, Plasmonic coupling-boosted photothermal nanoreactor for efficient solar light-driven photocatalytic water splitting, J. Colloid Interface Sci. 652(Pt A)(2023)1016-1027. [4] N.M. Mahmoodi, M. Ghezelbash, M. Shabanian, F. Aryanasab, M.R. Saeb, Efficient removal of cationic dyes from colored wastewaters by dithiocarbamate-functionalized graphene oxide nanosheets:from synthesis to detailed kinetics studies, J. Taiwan Inst. Chem. Eng. 81(2017)239-246. [5] B. Hayati, N.M. Mahmoodi, A. Maleki, Dendrimer-titania nanocomposite:synthesis and dye-removal capacity, Res. Chem. Intermed. 41(6)(2015)3743-3757. [6] M. Qin, L.M. Zhang, H.J. Wu, Dual-template hydrothermal synthesis of multi-channel porous NiCO2O4 hollow spheres as high-performance electromagnetic wave absorber, Appl. Surf. Sci. 515(2020)146132. [7] J. Zhang, G. Zhang, Q.H. Ji, H.C. Lan, J.H. Qu, H.J. Liu, Carbon nanodot-modified FeOCl for photo-assisted Fenton reaction featuring synergistic in-situ H2O2 production and activation, Appl. Catal. B 266(2020)118665. [8] W.L. Shi, L.J. Wang, J. Wang, H.R. Sun, Y.X. Shi, F. Guo, C.Y. Lu, Magnetically retrievable CdS/reduced graphene oxide/ZnFe2O4 ternary nanocomposite for self-generated H2O2 towards photo-Fenton removal of tetracycline under visible light irradiation, Sep. Purif. Technol. 292(2022)120987. [9] Z.M. He, H.P. Yang, J.B. Su, Y.M. Xia, X.F. Fu, L.N. Wang, L. Kang, Construction of multifunctional dual Z-scheme composites with enhanced photocatalytic activities for degradation of ciprofloxacin, Fuel 294(2021)120399. [10] W.L. Shi, W. Sun, Y.N. Liu, K. Zhang, H.R. Sun, X. Lin, Y.Z. Hong, F. Guo, A self-sufficient photo-Fenton system with coupling in situ production H2O2 of ultrathin porous g-C3N4 nanosheets and amorphous FeOOH quantum dots, J. Hazard. Mater. 436(2022)129141. [11] J.H. Lai, X.Y. Jiang, M. Zhao, S.H. Cui, J. Yang, Y.F. Li, Thickness-dependent layered BiOIO3 modified with carbon quantum dots for photodegradation of bisphenol A:mechanism, pathways and DFT calculation, Appl. Catal. B 298(2021)120622. [12] C.Y. Lu, J. Wang, D.L. Cao, F. Guo, X.L. Hao, D. Li, W.L. Shi, Synthesis of magnetically recyclable g-C3N4/NiFe2O4 S-scheme heterojunction photocatalyst with promoted visible-light-response photo-Fenton degradation of tetracycline, Mater. Res. Bull. 158(2023)112064. [13] N.M. Mahmoodi, F. Moghimi, M. Arami, F. Mazaheri, Silk degumming using microwave irradiation as an environmentally friendly surface modification method, Fibres. Polym. 11(2)(2010)234-240. [14] S.C. Ma, D. Yang, Y.N. Guan, Y. Yang, Y.F. Zhu, Y.Q. Zhang, J. Wu, L. Sheng, L. Liu, T.J. Yao, Maximally exploiting active sites on Yolk@shell nanoreactor:nearly 100 % PMS activation efficiency and outstanding performance over full pH range in Fenton-like reaction, Appl. Catal. B 316(2022)121594. [15] X.W. Liu, P.H. Shao, S.S. Gao, Z.Y. Bai, J.Y. Tian, Benzoquinone-assisted heterogeneous activation of PMS on Fe3S4 via formation of active complexes to mediate electron transfer towards enhanced bisphenol A degradation, Water Res. 226(2022)119218. [16] S.M. Li, F. Wu, R.B. Lin, J. Wang, C.X. Li, Z.Q. Li, J. Jiang, Y.J. Xiong, Enabling photocatalytic hydrogen production over Fe-based MOFs by refining band structure with dye sensitization, Chem. Eng. J. 429(2022)132217. [17] G.W. Zhu, S. Wang, Z.C. Yu, L. Zhang, D.X. Wang, B. Pang, W.N. Sun, Application of Fe-MOFs in advanced oxidation processes, Res. Chem. Intermed. 45(7)(2019)3777-3793. [18] J.A. Sun, G.L. Yu, Q.S. Huo, Q.B. Kan, J.Q. Guan, Epoxidation of styrene over Fe (Cr)-MIL-101 metal-organic frameworks, RSC Adv. 4(72)(2014)38048-38054. [19] W.B. Liu, J.B. Zhou, D. Liu, S. Liu, X.J. Liu, S. Xiao, C.J. Feng, C.H. Leng, Fe-MOF by ligand selective pyrolysis for Fenton-like process and photocatalysis:Accelerating effect of oxygen vacancy, J. Taiwan Inst. Chem. Eng. 127(2021)327-333. [20] L. Chi, Q. Xu, X.Y. Liang, J.D. Wang, X.T. Su, Iron-based metal-organic frameworks as catalysts for visible light-driven water oxidation, Small 12(10)(2016)1351-1358. [21] Z.D. Lei, Y.C. Xue, W.Q. Chen, L. Li, W.H. Qiu, Y. Zhang, L. Tang, The influence of carbon nitride nanosheets doping on the crystalline formation of MIL-88B (Fe) and the photocatalytic activities, Small 14(35)(2018) e1802045. [22] H. Yuan, H.R. Sun, Y.X. Shi, J.X. Wang, A. Bian, Y.Y. Hu, F. Guo, W.L. Shi, X. Du, Z.H. Kang, Cooperation of carbon doping and carbon loading boosts photocatalytic activity by the optimum photo-induced electron trapping and interfacial charge transfer, Chem. Eng. J. 472(2023)144654. [23] S.M. Li, S.S. Shan, S. Chen, H.B. Li, Z.Y. Li, Y.X. Liang, J.Y. Fei, L.H. Xie, J.R. Li, Photocatalytic degradation of hazardous organic pollutants in water by Fe-MOFs and their composites:a review, J. Environ. Chem. Eng. 9(5)(2021)105967. [24] Q.S. Wu, M.S. Siddique, Y.K. Yang, M. Wu, L. Kang, H.P. Yang, Facile and scalable synthesis of Fe-based metal organic frameworks for highly efficient photo-Fenton degradation of organic contaminants, J. Clean. Prod. 374(2022)134033. [25] H.D. Nie, Y. Liu, Y. Li, K.Q. Wei, Z.Y. Wu, H. Shi, H. Huang, Y. Liu, M.W. Shao, Z.H. Kang, In-situ transient photovoltage study on interface electron transfer regulation of carbon dots/NiCO2O4 photocatalyst for the enhanced overall water splitting activity, Nano Res. 15(3)(2022)1786-1795. [26] B.Y. Wang, G.I.N. Waterhouse, S.Y. Lu, Carbon dots:mysterious past, vibrant present, and expansive future, Trends Chem. 5(1)(2023)76-87. [27] J.L. Lu, Y.X. Shi, Z.Z. Chen, X.H. Sun, H. Yuan, F. Guo, W.L. Shi, Photothermal effect of carbon dots for boosted photothermal-assisted photocatalytic water/seawater splitting into hydrogen, Chem. Eng. J. 453(2023)139834. [28] K.Q. Li, Y.Q. Jiang, W. Rao, Y.D. Li, X. Liu, J. Zhang, X.Z. Xu, K.F. Lin, Cooperative coupling strategy for constructing 0D/2D carbon nitride composites with strengthened chemical interaction for enhanced photocatalytic applications, Chem. Eng. J. 431(2022)134075. [29] H. Yuan, W.L. Shi, J.L. Lu, J.X. Wang, Y.X. Shi, F. Guo, Z.H. Kang, Dual-channels separated mechanism of photo-generated charges over semiconductor photocatalyst for hydrogen evolution:Interfacial charge transfer and transport dynamics insight, Chem. Eng. J. 454(2023)140442. [30] B. Li, W. Peng, J. Zhang, J.C. Lian, T. Huang, N. Cheng, Z.Y. Luo, W.Q. Huang, W.Y. Hu, A.L. Pan, L. Jiang, G.F. Huang, One-photon excitation pathway:high-throughput one-photon excitation pathway in 0D/3D heterojunctions for visible-light driven hydrogen evolution (adv. funct. mater. 18/2021), Adv. Funct. Mater. 31(18)(2021)2100816. [31] Y. Shi, L. Li, Z. Xu, H. Sun, F. Guo, W. Shi, One-step simple green method to prepare carbon-doped graphitic carbon nitride nanosheets for boosting visible-light photocatalytic degradation of tetracycline, J. Chem. Technol. Biot. 96(2021)3122-3133. [32] X.H. Li, X. Li, B. Wang, H2O2 activation by two-dimensional metal-organic frameworks with different metal nodes for micropollutants degradation:metal dependence of boosting reactive oxygen species generation, J. Hazard. Mater. 440(2022)129757. [33] W.L. Shi, F. Guo, M.Y. Li, Y. Shi, M.F. Wu, Y.B. Tang, Enhanced visible-light-driven photocatalytic H2 evolution on the novel nitrogen-doped carbon dots/CuBi2O4 microrods composite, J. Alloys Compd. 775(2019)511-517. [34] W.L. Shi, F. Guo, M.Y. Li, Y. Shi, Y.B. Tang, N-doped carbon dots/CdS hybrid photocatalyst that responds to visible/near-infrared light irradiation for enhanced photocatalytic hydrogen production, Sep. Purif. Technol. 212(2019)142-149. [35] S.Y. Su, Z.P. Xing, S.Y. Zhang, M. Du, Y. Wang, Z.Z. Li, P. Chen, Q. Zhu, W. Zhou, Ultrathin mesoporous g-C3N4/NH2-MIL-101(Fe) octahedron heterojunctions as efficient photo-Fenton-like system for enhanced photo-thermal effect and promoted visible-light-driven photocatalytic performance, Appl. Surf. Sci. 537(2021)147890. [36] B. Hayati, N.M. Mahmoodi, M. Arami, F. Mazaheri, Dye removal from colored textile wastewater by poly (propylene imine) dendrimer:operational parameters and isotherm studies, CLEAN 39(7)(2011)673-679. [37] Y.H. Xie, C.R. Liu, D.J. Li, Y. Liu, In situ-generated H2O2 with NCQDs/MIL-101(Fe) by activating O2:a dual effect of photocatalysis and photo-Fenton for efficient removal of tetracyline at natural pH, Appl. Surf. Sci. 592(2022)153312. [38] M. Arami, S. Rahimi, L. Mivehie, F. Mazaheri, N.M. Mahmoodi, Degumming of Persian silk with mixed proteolytic enzymes, J. Appl. Polym. Sci. 106(1)(2007)267-275. [39] N.M. Mahmoodi, M. Bashiri, S.J. Moeen, Synthesis of nickel-zinc ferrite magnetic nanoparticle and dye degradation using photocatalytic ozonation, Mater. Res. Bull. 47(12)(2012)4403-4408. [40] W. Shi, J. Wang, S. Yang, X. Lin, F. Guo, J. Shi, Fabrication of a ternary carbon dots/CoO/g-C3N4 nanocomposite photocatalyst with enhanced visible-light-driven photocatalytic hydrogen production, J. Chem. Technol. Biot. 95(2020)2129-2138. [41] J.K. Tan, C.J. Xu, X.D. Zhang, Y.M. Huang, MOFs-derived defect carbon encapsulated magnetic metallic Co nanoparticles capable of efficiently activating PMS to rapidly degrade dyes, Sep. Purif. Technol. 289(2022)120812. [42] F. Guo, H.R. Sun, L. Cheng, W.L. Shi, Oxygen-defective ZnO porous nanosheets modified by carbon dots to improve their visible-light photocatalytic activity and gain mechanistic insight, New J. Chem. 44(26)(2020)11215-11223. [43] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, W.L. Shi, Investigation of visible-light-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO3 cubes:mechanism and degradation pathway, Sep. Purif. Technol. 253(2020)117518. [44] F. Hosseini, S. Sadighian, H. Hosseini-Monfared, N.M. Mahmoodi, Dye removal and kinetics of adsorption by magnetic chitosan nanoparticles, Desalin. Water Treat. 57(51)(2016)24378-24386. [45] K. Gharanjig, M. Arami, H. Bahrami, B. Movassagh, N.M. Mahmoodi, S. Rouhani, Synthesis, spectral properties and application of novel monoazo disperse dyes derived from N-ester-1, 8-naphthalimide to polyester, Dyes Pigm. 76(3)(2008)684-689. [46] Y. Li, Y.J. Zhao, H.D. Nie, K.Q. Wei, J.J. Cao, H. Huang, M.W. Shao, Y. Liu, Z.H. Kang, Interface photo-charge kinetics regulation by carbon dots for efficient hydrogen peroxide production, J. Mater. Chem. A 9(1)(2021)515-522. [47] W.L. Shi, S. Yang, H.R. Sun, J.B. Wang, X. Lin, F. Guo, J.Y. Shi, Carbon dots anchored high-crystalline g-C3N4 as a metal-free composite photocatalyst for boosted photocatalytic degradation of tetracycline under visible light, J. Mater. Sci. 56(3)(2021)2226-2240. [48] H.M. Cheng, C.C. Zang, F.X. Bian, Y.K. Jiang, L. Yang, F. Dong, H.Y. Jiang, Boosting free radical type photocatalysis over Pd/Fe-MOFs by coordination structure engineering, Catal. Sci. Technol. 11(16)(2021)5543-5552. [49] Y.Y. Li, J. Jiang, Y. Fang, Z.L. Cao, D.Y. Chen, N.J. Li, Q.F. Xu, J.M. Lu, TiO2 nanoparticles anchored onto the metal-organic framework NH2-MIL-88B (Fe) as an adsorptive photocatalyst with enhanced fenton-like degradation of organic pollutants under visible light irradiation, ACS Sustainable Chem. Eng. 6(12)(2018)16186-16197. [50] H. Liang, R.P. Liu, C.Z. Hu, X.Q. An, X.W. Zhang, H.J. Liu, J.H. Qu, Synergistic effect of dual sites on bimetal-organic frameworks for highly efficient peroxide activation, J. Hazard. Mater. 406(2021)124692. [51] Z.Y. Wu, X.K. Li, Y. Zhao, Y. Li, K.Q. Wei, H. Shi, T.Y. Zhang, H. Huang, Y. Liu, Z.H. Kang, Organic semiconductor/carbon dot composites for highly efficient hydrogen and hydrogen peroxide coproduction from water photosplitting, ACS Appl. Mater. Interfaces 13(50)(2021)60561-60570. [52] F. Chen, K. Bian, H. Li, Y. Tang, C. Hao, W. Shi, A novel CeO2/MIL101(Fe) heterojunction for enhanced photocatalytic degradation of tetracycline under visible-light irradiation, J. Chem. Technol. Biot. 97(2022)1884-1892. [53] X.W. Ruan, C.X. Huang, H. Cheng, Z.Q. Zhang, Y. Cui, Z.Y. Li, T.F. Xie, K.K. Ba, H.Y. Zhang, L. Zhang, X. Zhao, J. Leng, S.Y. Jin, W. Zhang, W.T. Zheng, S.K. Ravi, Z.F. Jiang, X.Q. Cui, J.G. Yu, A twin S-scheme artificial photosynthetic system with self-assembled heterojunctions yields superior photocatalytic hydrogen evolution rate, Adv. Mater. 35(6)(2023) e2209141. [54] J.J. Dang, J.X. Zhang, Y. Shen, L.P. Wang, F. Guo, Y.L. Li, W.S. Guan, Fabrication of magnetically recyclable Fe3O4/BiOCl/BiOBr nanocomposite with Z-scheme heterojunction for high-efficiency photocatalytic degradation of tetracycline, Mater. Sci. Semicond. Process. 158(2023)107371. [55] N.M. Mahmoodi, F. Najafi, Synthesis, amine functionalization and dye removal ability of titania/silica nano-hybrid, Microporous Mesoporous Mater. 156(2012)153-160. [56] H.R. Sun, L.J. Wang, F. Guo, Y.X. Shi, L.L. Li, Z. Xu, X. Yan, W.L. Shi, Fe-doped g-C3N4 derived from biowaste material with Fe-N bonds for enhanced synergistic effect between photocatalysis and Fenton degradation activity in a broad pH range, J. Alloys Compd. 900(2022)163410. [57] H.R. Sun, F. Guo, J.J. Pan, W. Huang, K. Wang, W.L. Shi, One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process, Chem. Eng. J. 406(2021)126844. [58] H.R. Sun, F. Guo, W.L. Shi, L.Z. Wang, A universal numerical evaluation strategy for photocatalysts based on the photoelectron transfer (PET) restriction effect:a review, Chem. Eng. J. 463(2023)142421. [59] D.L. Cao, X.Y. Wang, H.F. Zhang, D.Q. Yang, Z. Yin, Z. Liu, C.Y. Lu, F. Guo, Rational design of monolithic g-C3N4 with floating network porous-like sponge monolithic structure for boosting photocatalytic degradation of tetracycline under simulated and natural sunlight illumination, Molecules 28(10)(2023)3989. [60] W.L. Shi, C.C. Hao, Y.M. Fu, F. Guo, Y.B. Tang, X. Yan, Enhancement of synergistic effect photocatalytic/persulfate activation for degradation of antibiotics by the combination of photo-induced electrons and carbon dots, Chem. Eng. J. 433(2022)133741. [61] W.L. Shi, Y.M. Fu, H.R. Sun, X.H. Sun, C.C. Hao, F. Guo, Y.B. Tang, Construction of 0D/3D CoFe2O4/MIL-101(Fe) complement each other S-scheme heterojunction for effectively boosted photocatalytic degradation of tetracycline, Inorg. Chem. Commun. 146(2022)110140. [62] C.Y. Lu, D.L. Cao, H.F. Zhang, L.N. Gao, W.L. Shi, F. Guo, Y.H. Zhou, J.H. Liu, Boosted tetracycline and Cr (VI) simultaneous cleanup over Z-scheme WO3/CoO p-n heterojunction with 0D/3D structure under visible light, Molecules 28(12)(2023)4727. [63] X.Y. Kong, L.W. Cao, Y.X. Shi, Z.Z. Chen, W.L. Shi, X. Du, Construction of S-scheme 2D/2D crystalline carbon nitride/BiOIO3 van der waals heterojunction for boosted photocatalytic degradation of antibiotics, Molecules 28(13)(2023)5098. [64] X.H. Sun, K.L. He, Z.Z. Chen, H. Yuan, F. Guo, W.L. Shi, Construction of visible-light-response photocatalysis-self-Fenton system for the efficient degradation of amoxicillin based on industrial waste red mud/CdS S-scheme heterojunction, Sep. Purif. Technol. 324(2023)124600. [65] Y.F. Pan, H.J. Li, L. Zheng, X.F. Xu, The Al2O3 and Mn/Al2O3 sorbents highly utilized in destructive sorption of NF3, Chin. J. Chem. Eng.(2023). [66] D.X. Yang, D. Qu, L. An, X.P. Zong, Z.C. Sun, A metal-free carbon dots for wastewater treatment by visible light active photo-Fenton-like reaction in the broad pH range, Chin. Chem. Lett. 32(7)(2021)2292-2296. [67] M.M. Zhang, C. Lai, B.S. Li, F.H. Xu, D.L. Huang, S.Y. Liu, L. Qin, Y.K. Fu, X.G. Liu, H. Yi, Y.J. Zhang, J.F. He, L. Chen, Unravelling the role of dual quantum dots cocatalyst in 0D/2D heterojunction photocatalyst for promoting photocatalytic organic pollutant degradation, Chem. Eng. J. 396(2020)125343. [68] K. Zhang, L.J. Wang, Y.Z. Hong, X.X. Duan, C.J. Ai, L.L. Zhang, T.F. Zhang, Y. Chen, X. Lin, W.L. Shi, F. Guo, Iron phthalocyanine nanodots decorated ultra-thin porous carbon nitride:a combination of photocatalysis and Fenton reaction to achieve two-channel efficient tetracycline degradation, J. Alloys Compd. 966(2023)171580. [69] N.M. Mahmoodi, B. Hayati, M. Arami, Kinetic, equilibrium and thermodynamic studies of ternary system dye removal using a biopolymer, Ind. Crops Prod. 35(1)(2012)295-301. [70] U. Ghosh, A. Pal, Insight into the multiple roles of nitrogen doped carbon quantum dots in an ultrathin 2D-0D-2D all-solid-state Z scheme heterostructure and its performance in tetracycline degradation under LED illumination, Chem. Eng. J. 431(2022)133914. [71] C.C. Long, S.C. Liu, X. Li, J. Zhu, L. Zhang, T.P. Qing, P. Zhang, B. Feng, In-situ covalent bonding of carbon dots on two-dimensional tungsten disulfide interfaces for effective monitoring and remediation of chlortetracycline residue, Chem. Eng. J. 432(2022)134315. [72] Z.Z. Chen, Y.J. Yan, C.Y. Lu, X. Lin, Z.J. Fu, W.L. Shi, F. Guo, Photocatalytic self-Fenton system of g-C3N4-based for degradation of emerging contaminants:a review of advances and prospects, Molecules 28(15)(2023)5916. [73] S.Z. Wang, J.L. Wang, Kinetics of PMS activation by graphene oxide and biochar, Chemosphere 239(2020)124812. [74] Y.O. Wang, R. Godin, J.R. Durrant, J.W. Tang, Efficient hole trapping in carbon dot/oxygen-modified carbon nitride heterojunction photocatalysts for enhanced methanol production from CO2 under neutral conditions, Angew. Chem. Int. Ed Engl. 60(38)(2021)20811-20816. [75] H. Liang, R.P. Liu, X.Q. An, C.Z. Hu, X.W. Zhang, H.J. Liu, Bimetal-organic frameworks with coordinatively unsaturated metal sites for highly efficient Fenton-like catalysis, Chem. Eng. J. 414(2021)128669. [76] Z.J. Xiao, X.C. Feng, H.T. Shi, B.Q. Zhou, W.Q. Wang, N.Q. Ren, Why the cooperation of radical and non-radical pathways in PMS system leads to a higher efficiency than a single pathway in tetracycline degradation, J. Hazard. Mater. 424(Pt A)(2022)127247. [77] D. Asefi, M. Arami, A.A. Sarabi, N.M. Mahmoodi, The chain length influence of cationic surfactant and role of nonionic co-surfactants on controlling the corrosion rate of steel in acidic media, Corros. Sci. 51(8)(2009)1817-1821. [78] L.W. Yang, Z.K. Xiong, J.W. Li, Z.L. Wu, X.H. Zhao, C.L. Zhao, Y.X. Zhou, Y.X. Qian, B. Lai, Iron active sites encapsulated in N-doped graphite for efficiently selective degradation of emerging contaminants via peroxymonosulfate (PMS) activation:inherent roles of adsorption and electron-transfer dominated nonradical mechanisms, Chem. Eng. J. 444(2022)136623. [79] M. Nawaz, A. Shahzad, K. Tahir, J. Kim, M. Moztahida, J. Jang, M.B. Alam, S.H. Lee, H.Y. Jung, D.S. Lee, Photo-Fenton reaction for the degradation of sulfamethoxazole using a multi-walled carbon nanotube-NiFe2O4 composite, Chem. Eng. J. 382(2020)123053. [80] J.J. Pan, F. Guo, H.R. Sun, Y.X. Shi, W.L. Shi, Nanodiamonds anchored on porous ZnSnO3 cubes as an efficient composite photocatalyst with improved visible-light photocatalytic degradation of tetracycline, Sep. Purif. Technol. 263(2021)118398. [81] W.L. Shi, J. Gao, H.R. Sun, Z.Y. Liu, F. Guo, L.J. Wang, Highly efficient visible/near-infrared light photocatalytic degradation of antibiotic wastewater over 3D yolk-shell ZnFe2O4 supported 0D carbon dots with up-conversion property, Chin. J. Chem. Eng. 49(2022)213-223. [82] W.L. Shi, C.C. Hao, Y.X. Shi, F. Guo, Y.B. Tang, Effect of different carbon dots positions on the transfer of photo-induced charges in type I heterojunction for significantly enhanced photocatalytic activity, Sep. Purif. Technol. 304(2023)122337. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||