[1] M.K. Mondal, H.K. Balsora, P. Varshney, Progress and trends in CO2 capture/separation technologies:A review, Energy 46(1)(2012)431-441. [2] J.H. Park, J. Yang, D. Kim, H. Gim, W.Y. Choi, J.W. Lee, Review of recent technologies for transforming carbon dioxide to carbon materials, Chem. Eng. J. 427(2022)130980. [3] L.Q. Duan, M.D. Zhao, Y.P. Yang, Integration and optimization study on the coalfired power plant with CO2 capture using MEA, Energy 45(1)(2012)107-116. [4] P.Y. Zhao, G.J. Zhang, H.Y. Yan, Y.Q. Zhao, The latest development on amine functionalized solid adsorbents for post-combustion CO2 capture:Analysis review, Chin. J. Chem. Eng. 35(2021)17-43. [5] X.L. Zhao, Q. Cui, B.D. Wang, X.L. Yan, S. Singh, F. Zhang, X. Gao, Y.L. Li, Recent progress of amine modified sorbents for capturing CO2 from flue gas, Chin. J. Chem. Eng. 26(11)(2018)2292-2302. [6] A. Sattari, A. Ramazani, H. Aghahosseini, M.K. Aroua, The application of polymer containing materials in CO2 capturing via absorption and adsorption methods, J. CO2 Util. 48(2021)101526. [7] A. Hart, N. Gnanendran, Cryogenic CO2 capture in natural gas, Energy Proc. 1(1)(2009)697-706. [8] H. Dashti, L. Zhehao Yew, X. Lou, Recent advances in gas hydrate-based CO2 capture, J. Nat. Gas Sci. Eng. 23(2015)195-207. [9] B.C. Liu, M.M. Zhang, X. Yang, T. Wang, Simulation and energy analysis of CO2 capture from CO2eEOR extraction gas using cryogenic fractionation, J. Taiwan Inst. Chem. Eng. 103(2019)67-74. [10] S.H. Lian, C.F. Song, Q.L. Liu, E.H. Duan, H.W. Ren, Y. Kitamura, Recent advances in ionic liquids-based hybrid processes for CO2 capture and utilization, J. Environ. Sci.(China)99(2021)281-295. [11] M. Hasib-ur-Rahman, M. Siaj, F. Larachi, Ionic liquids for CO2 capturedDevelopment and progress, Chem. Eng. Process 49(4)(2010)313-322. [12] M. Aghaie, N. Rezaei, S. Zendehboudi, A systematic review on CO2 capture with ionic liquids:Current status and future prospects, Renew. Sustain. Energy Rev. 96(2018)502-525. [13] W. Chen, M. Chen, M.K. Yang, E.B. Zou, H. Li, C.Z. Jia, C.Y. Sun, Q.L. Ma, G.J. Chen, H.B. Qin, A new approach to the upgrading of the traditional propylene carbonate washing process with significantly higher CO2 absorption capacity and selectivity, Appl. Energy 240(2019)265-275. [14] F. Vega, F.M. BaenaeMoreno, L.M. Gallego Fernandez, E. Portillo, B. Nav-arrete, Z.E. Zhang, Current status of CO2 chemical absorption research applied to CCS:Towards full deployment at industrial scale, Appl. Energy 260(2020)114313. [15] A.B. Rao, E.S. Rubin, A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control, Environ. Sci. Technol. 36(20)(2002)4467-4475. [16] B. Dutcher, M.H. Fan, A.G. Russell, Amine-based CO2 capture technology development from the beginning of 2013dA review, ACS Appl. Mater. Interfaces 7(4)(2015)2137-2148. [17] P.D. Vaidya, E.Y. Kenig, CO2ealkanolamine reaction kinetics:A review of recent studies, Chem. Eng. Technol. 30(11)(2007)1467-1474. [18] P.V. Danckwerts, The reaction of CO2 with ethanolamines, Chem. Eng. Sci. 34(4)(1979)443-446. [19] D. Barth, C. Tondre, J.J. Delpuech, Kinetics and mechanisms of the reactions of carbon dioxide with alkanolamines:A discussion concerning the cases of MDEA and DEA, Chem. Eng. Sci. 39(12)(1984)1753-1757. [20] R.A. Tomcej, F.D. Otto, Absorption of CO2 and N2O into aqueous solutions of methyldiethanolamine, AIChE J. 35(5)(1989)861-864. [21] M. Gupta, E.F. da Silva, A. Hartono, H.F. Svendsen, Theoretical study of differential enthalpy of absorption of CO2 with MEA and MDEA as a function of temperature, J. Phys. Chem. B 117(32)(2013)9457-9468. [22] F.A. Chowdhury, H. Yamada, T. Higashii, K. Goto, M. Onoda, CO2 capture by tertiary amine absorbents:A performance comparison study, Ind. Eng. Chem. Res. 52(24)(2013)8323-8331. [23] G. Fytianos, S. Ucar, A. Grimstvedt, A. Hyldbakk, H.F. Svendsen, H.K. Knuutila, Corrosion and degradation in MEA based post-combustion CO2 capture, Int. J. Greenh. Gas Contr. 46(2016)48-56. [24] R.P. Cabral, D.J. Heldebrant, N. Mac Dowell, A techno-economic analysis of a novel solvent-based oxycombustion CO2 capture process, Ind. Eng. Chem. Res. 58(16)(2019)6604-6612. [25] C.H. Yu, C.H. Huang, C.S. Tan, A review of CO2 capture by absorption and adsorption, Aerosol Air Qual. Res. 12(5)(2012)745-769. [26] S. Evjen, A. Fiksdahl, H.K. Knuutila, High-capacity amineeimidazole solvent blends for CO2 capture, Ind. Eng. Chem. Res. 58(24)(2019)10533-10539. [27] M.S. Shannon, J.E. Bara, Properties of alkylimidazoles as solvents for CO2 capture and comparisons to imidazolium-based ionic liquids, Ind. Eng. Chem. Res. 50(14)(2011)8665-8677. [28] M.S. Shannon, J.M. Tedstone, S.P.O. Danielsen, J.E. Bara, Evaluation of alkylimidazoles as physical solvents for CO2/CH4 separation, Ind. Eng. Chem. Res. 51(1)(2012)515-522. [29] H. Liu, P. Guo, G.J. Chen, Investigation of CO2 capture efficiency and mechanism in 2-methylimidazoleeglycol solution, Sep. Purif. Technol. 189(2017)66-73. [30] H. Li, W. Chen, B. Liu, C.Z. Jia, Z.C. Qiao, C.Y. Sun, L.Y. Yang, Q.L. Ma, G.J. Chen, CO2 capture using ZIF-8/water-glycol-2-methylimidazole slurry with high capacity and low desorption heat, Chem. Eng. Sci. 182(2018)189-199. [31] H. Liu, B. Liu, L.C. Lin, G.J. Chen, Y.Q. Wu, J. Wang, X.T. Gao, Y.N. Lv, Y. Pan, X.X. Zhang, X.R. Zhang, L.Y. Yang, C.Y. Sun, B. Smit, W.C. Wang, A hybrid absorptioneadsorption method to efficiently capture carbon, Nat. Commun. 5(2014)5147. [32] W. Chen, E.B. Zou, J.Y. Zuo, M. Chen, M.K. Yang, H. Li, C.Z. Jia, B. Liu, C.Y. Sun, C. Deng, Q.L. Ma, L.Y. Yang, G.J. Chen, Separation of ethane from natural gas using porous ZIF-8/watereglycol slurry, Ind. Eng. Chem. Res. 58(23)(2019)9997-10006. [33] T. Gao, W.S. Lin, A.Z. Gu, Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized, Energy Convers. Manag. 52(6)(2011)2401-2404. [34] G. Richner, G. Puxty, Assessing the chemical speciation during CO2 absorption by aqueous amines using in situ FTIR, Ind. Eng. Chem. Res. 51(44)(2012)14317-14324. [35] G.S. Foo, J.J. Lee, C.H. Chen, S.E. Hayes, C. Sievers, C.W. Jones, Elucidation of surface species through in situ FTIR spectroscopy of carbon dioxide adsorption on amine-grafted SBA-15, ChemSusChem 10(1)(2017)266-276. [36] I. Sed enkov a, M. Trchov a, J. Stejskal, Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in waterdFTIR and Raman spectroscopic studies, Polym. Degrad. Stab. 93(12)(2008)2147-2157. [37] D. Danielewicz, M. Kmiotek, B. Surma-Slusarska, Study of ionic liquids UV eVis and FT-IR spectra before and after heating and spruce groundwood dissolution, 1. Fibres Text. East. Eur. 114(133)(2019)118-123. [38] L. Miyan, A. Ahmad, Synthesis, crystallographic, spectral, and spectrophotometric studies of proton transfer complex of 1,2-dimethylimidazole with 3,5-dinitrobenzoic acid in different polar solvents, J. Mol. Struct. 1133(2017)144-153. [39] S. Meure, D.Y. Wu, S.A. Furman, FTIR study of bonding between a thermoplastic healing agent and a mendable epoxy resin, Vib. Spectrosc. 52(1)(2010)10-15. [40] K. Robinson, A. McCluskey, M.I. Attalla, An FTIR spectroscopic study on the effect of molecular structural variations on the CO2 absorption characteristics of heterocyclic amines, ChemPhysChem 12(6)(2011)1088-1099. [41] E. Gjernes, S. Pedersen, T. Cents, G. Watson, B.F. Fostås, M.I. Shah, G. Lombardo, C. Desvignes, N.E. Flø, A.K. Morken, T. de Cazenove, L. Faramarzi, E.S. Hamborg, Results from 30 wt% MEA performance testing at the CO2 technology centre mongstad, Energy Proc. 114(2017)1146-1157. |