[1] J. Bullock, D. George, K.H. Haddow, Global Warming, Natural Hazards, and Emergency Management, CRC Press, Boca Raton, 2009. [2] Y.W. Han, A.J. Wang, F.Y. Zhou, Should China continue developing the coalbased synthetic natural gas?Energy Sources B 12(8)(2017)722-729. [3] M. Gupta, E.F. da Silva, H.F. Svendsen, Modeling differential enthalpy of absorption of CO2 with piperazine as a function of temperature, J. Phys. Chem. B 126(9)(2022)1980-1991. [4] S. Nurkhamidah, A. Altway, B. Airlangga, D.P. Emilia, Simulation and modeling CO2 absorption in biogas with DEA promoted Ki2CO3 solution in packed column, AIP Conf. Proc. 1840(1)(2017)100002. [5] J. Avila, L.F. Lepre, K. Goloviznina, L. Guazzelli, C.S. Pomelli, C. Chiappe, A. P adua, M. Costa Gomes, Improved carbon dioxide absorption in doublecharged ionic liquids, Phys. Chem. Chem. Phys. 23(40)(2021)23130-23140. [6] H. Zhang, B. Wang, M.Y. Xiong, C.Y. Gao, H.Y. Ren, L. Ma, Process intensification in gas-liquid mass transfer by nanofluids:Mechanism and current status, J. Mol. Liq. 346(2022)118268. [7] Y. Chen, A.M. Abed, A.B. Faisal Raheem, A.S. Altamimi, Y. Yasin, W. Abdi Sheekhoo, G. Fadhil Smaisim, A. Ali Ghabra, N. Ahmed Naseer, Current advancements towards the use of nanofluids in the reduction of CO2 emission to the atmosphere, J. Mol. Liq. 371(2023)121077. [8] S.Y. Cheng, Y.Z. Liu, G.S. Qi, Progress in the enhancement of gas-liquid mass transfer by porous nanoparticle nanofluids, J. Mater. Sci. 54(20)(2019)13029-13044. [9] M. Ghalambaz, A. Doostani, E. Izadpanahi, A.J. Chamkha, Conjugate natural convection flow of AgeMgO/water hybrid nanofluid in a square cavity, J. Therm. Anal. Calorim. 139(3)(2020)2321-2336. [10] Z.M. Zhou, E. Davoudi, B. Vaferi, Monitoring the effect of surface functionalization on the CO2 capture by graphene oxide/methyl diethanolamine nanofluids, J. Environ. Chem. Eng. 9(5)(2021)106202. [11] J.X. Liang, H.Y. Han, W.B. Li, X.X. Ma, L. Xu, Experimental study on the absorption enhancement of CO2 by MDEA-MEA based nanofluids, Can. J. Chem. Eng. 100(11)(2022)3335-3344. [12] P. Dehghan, A. Azari, R. Azin, Measurement and correlation for CO2 mass diffusivity in various metal oxide nanofluids, J. Environ. Chem. Eng. 8(1)(2020)103598. [13] M. Jeong, J.W. Lee, S.J. Lee, Y.T. Kang, Mass transfer performance enhancement by nanoemulsion absorbents during CO2 absorption process, Int. J. Heat Mass Transf. 108(2017)680-690. [14] T. Wang, W. Yu, F. Liu, M.X. Fang, M. Farooq, Z.Y. Luo, Enhanced CO2 absorption and desorption by monoethanolamine (MEA)-based nanoparticle suspensions, Ind. Eng. Chem. Res. 55(28)(2016)7830-7838. [15] Y. Li, H.F. Lu, Y.Y. Liu, K.J. Wu, Y.M. Zhu, B. Liang, CO2 absorption and desorption enhancement by nano-SiO2 in DBU-glycerol solution with high viscosity, Sep. Purif. Technol. 309(2023)122983. [16] Q. Zhang, C.C. Cheng, T. Wu, G.L. Xu, W. Liu, The effect of Fe3O4 nanoparticles on the mass transfer of CO2 absorption into aqueous ammonia solutions, Chem. Eng. Process. Process. Intensif. 154(2020)108002. [17] C.T. Yuan, Y. Wang, F. Baena-Moreno, Z. Pan, R. Zhang, H.H. Zhou, Z.E. Zhang, Review and perspectives of CO2 absorption by water-and amine-based nanofluids, Energy Fuels 37(2023)8883-8901. [18] A. Tavakoli, K. Rahimi, F. Saghandali, J. Scott, E. Lovell, Nanofluid preparation, stability and performance for CO2 absorption and desorption enhancement:A review, J. Environ. Manage. 313(2022)114955. [19] S.Y. Cheng, Y.Z. Liu, G.S. Qi, Microwave synthesis of MCM-41 and its application in CO2 absorption by nanofluids, J. Nanomater. 2020(2020)1-13. [20] A. Golkhar, P. Keshavarz, D. Mowla, Investigation of CO2 removal by silica and CNT nanofluids in microporous hollow fiber membrane contactors, J. Membr. Sci. 433(2013)17-24. [21] B. Jafari, M.R. Rahimi, M. Ghaedi, K. Dashtian, S. Mosleh, CO2 capture by amine-based aqueous solution containing atorvastatin functionalized mesocellular silica foam in a counter-current rotating packed bed:Central composite design modeling, Chem. Eng. Res. Des. 129(2018)64-74. [22] J.H. Kim, C.W. Jung, Y.T. Kang, Mass transfer enhancement during CO2 absorption process in methanol/Al2O3 nanofluids, Int. J. Heat Mass Transf. 76(2014)484-491. [23] K. Ogasawara, A. Yamasaki, H. Teng, Mass transfer from CO2 drops traveling in high-pressure and low-temperature water, Energy Fuels 15(1)(2001)147-150. [24] W. Shang, Experimental Study of Stable Jet Conditions at the Bubble Overflow Free Interface, Ph.D. Thesis, North China Electric Power University, China, 2019.(in Chinese) [25] M.F. Su, Physical Property Measurements and NH3/H2O Bubble Absorption Enhancement of Two-Component Nanofluids, Ph.D. Thesis, Dalian University of Technology, China, 2008.(in Chinese) [26] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87(9-10)(2015)1051-1069. [27] M. Rezakazemi, M. Darabi, E. Soroush, M. Mesbah, CO2 absorption enhancement by water-based nanofluids of CNT and SiO2 using hollow-fiber membrane contactor, Sep. Purif. Technol. 210(2019)920-926. [28] L. Du, Y.J. Wang, K. Wang, G.S. Luo, Effects of nanoparticles with different wetting abilities on the gas-liquid mass transfer, Chem. Eng. Sci. 114(2014)105-113. [29] M. Arshadi, H. Taghvaei, M.K. Abdolmaleki, M. Lee, H. Eskandarloo, A. Abbaspourrad, Carbon dioxide absorption in water/nanofluid by a symmetric amine-based nanodendritic adsorbent, Appl. Energy 242(2019)1562-1572. [30] S. Yoon, J.T. Chung, Y.T. Kang, The particle hydrodynamic effect on the mass transfer in a buoyant CO2ebubble through the experimental and computational studies, Int. J. Heat Mass Transf. 73(2014)399-409. |