[1] S. Foucault, G. Ascanio, P.A. Tanguy, Power characteristics in coaxial mixing:Newtonian and non-Newtonian fluids, Ind. Eng. Chem. Res. 44(14)(2005)5036-5043. [2] P. Wang, T. Reviol, S. Kluck, P. Wurtz, M. Bohle, Mixing of non-Newtonian fluids in a cylindrical stirred vessel equipped with a novel side-entry propeller, Chem. Eng. Sci. 190(2018)384-395. [3] J.S. Ayala, H.L. de Moura, R. de Lima Amaral, F. de Assis Oliveira Jr, J.R. Nunhez, G.J. de Castilho, Two-dimensional shear rate field and flow structures of a pseudoplastic fluid in a stirred tank using particle image velocimetry, Chem. Eng. Sci. 248(2022)117198. [4] S. Saeed, F. Ein-Mozaffari, S.R. Upreti, Using computational fluid dynamics to study the dynamic behavior of the continuous mixing of Herschel-Bulkley fluids, Ind. Eng. Chem. Res. 47(19)(2008)7465-7475. [5] M. Zlokarnik, Stirring:Theory and Practice, Wiley-VCH, Weinhim, 2001. [6] L. Pakzad, F. Ein-Mozaffari, P. Chan, Using electrical resistance tomography and computational fluid dynamics modeling to study the formation of cavern in the mixing of pseudoplastic fluids possessing yield stress, Chem. Eng. Sci. 63(9)(2008)2508-2522. [7] P. Prajapati, F. Ein-Mozaffari, CFD investigation of the mixing of yield-pseudoplastic fluids with anchor impellers, Chem. Eng. Technol. 32(8)(2009)1211-1218. [8] L. Rudolph, M. Schafer, V. Atiemo-Obeng, M. Kraume, Experimental and numerical analysis of power consumption for mixing of high viscosity fluids with a co-axial mixer, Chem. Eng. Res. Des. 85(5)(2007)568-575. [9] H. Aref, Stirring by chaotic advection, J. Fluid Mech. 143(1984)1-21. [10] J.M. Ottino, The Kinematics of Mixing:Stretching, Chaos and Transport, Cambridge University Press, Cambridge, 1989. [11] G.O. Fountain, D.V. Khakhar, J.M. Ottino, Visualization of three-dimensional chaos, Science 281(5377)(1998)683-686. [12] M.M. Alvarez-Hernandez, T. Shinbrot, J. Zalc, F.J. Muzzio, Practical chaotic mixing, Chem. Eng. Sci. 57(17)(2002)3749-3753. [13] D.R. Gao, M. J. Guo, Y. Li, Z. L. Fan, PIV experimental investigation of chaotic mixing using non-constant speed stirring, Chin. J. Mech. Eng. 42(8)(2006)44-49,(in Chinese). [14] S. Woziwodzki, Turbulent forward-reverse mixing characteristics in vessel with multiple-turbine impellers, J. Chem. Technol. Biot. 88(3)(2013)483-490. [15] X. Xiong, S.S. Wang, P.Q. Liu, C.Y. Tao, Y.D. Wang, Z.H. Liu, Numerical investigation on intensified mixing performance with modified dual impeller, Chem. Eng. Sci. 274(2023)118698. [16] D.Y. Gu, Z.H. Liu, Z.M. Xie, J. Li, C.Y. Tao, Y.D. Wang, Numerical simulation of solid-liquid suspension in a stirred tank with a dual punched rigid-flexible impeller, Adv. Powder Technol. 28(10)(2017)2723-2734. [17] Z.H. Liu, X.Y. Yang, Z.M. Xie, R.L. Liu, C.Y. Tao, Y.D. Wang, Chaotic mixing performance of high-viscosity fluid synergistically intensified by flexible impeller and floating particles, CIESC J. 64(8)(2013)2794-2800,(in Chinese). [18] K.C. Ng, E.Y.K. Ng, Laminar mixing performances of baffling, shaft eccentricity and unsteady mixing in a cylindrical vessel, Chem. Eng. Sci. 104(2013)960-974. [19] M.M. Alvarez, P.E. Arratia, F.J. Muzzio, Laminar mixing in eccentric stirred tank systems, Can. J. Chem. Eng. 80(4)(2002)546-557. [20] B. Letellier, C. Xuereb, P. Swaels, P. Hobbes, J. Bertrand, Scale-up in laminar and transient regimes of a multi-stage stirrer, a CFD approach, Chem. Eng. Sci. 57(21)(2002)4617-4632. [21] D.Y. Luan, S.F. Zhang, X. Wei, Z.Y. Duan, Effect of the 6PBT stirrer eccentricity and off-bottom clearance on mixing of pseudoplastic fluid in a stirred tank, Results Phys. 7(2017)1079-1085. [22] S.S. Wang, H. Li, C.Y. Tao, R.L. Liu, Y.D. Wang, Z.H. Liu, Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids, Chin. J. Chem. Eng. 55(2023)111-122. [23] S.S. Wang, X. Xiong, P.Q. Liu, Q.Z. Zhang, Q. Zhang, C.Y. Tao, Y.D. Wang, Z.H. Liu, CFD simulation of hydrodynamics and mixing performance in dual shaft eccentric mixers, Chin. J. Chem. Eng. 62(2023)297-309. [24] L. Pakzad, F. Ein-Mozaffari, S.R. Upreti, A. Lohi, Evaluation of the mixing of non-Newtonian biopolymer solutions in the reactors equipped with the coaxial mixers through tomography and CFD, Chem. Eng. J. 215-216(2013)279-296. [25] D.Y. Luan, Y.M. Chen, H. Wang, Z.R. Wang, S.S. Wang, L.B. Li, Formation of heart-shaped cavern model in stirring pseudoplastic fluid with the impeller of perturbed six-bend-blade turbine, AIChE J. 65(5)(2019) e16572. [26] D.Y. Luan, Z.R. Wang, H. Wang, S.S. Wang, L.B. Li, Y.M. Chen, Determination method of the cavern boundary viscosity in a stirred tank with pseudoplastic fluid, AIChE J. 66(5)(2020) e16941. [27] F.L. Yang, C.X. Zhang, T.L. Su, Power and flow characteristics of flexible-blade Rushton impeller, CIESC J. 71(2)(2020)614-625,(in Chinese). [28] D.Y. Gu, J. Wang, H. Yang, Y.Y. Deng, Investigation on solid particles and pseudoplastic fluid mixing characteristics in a dislocated self-similarity impeller stirred reactor, Ind. Eng. Chem. Res. 62(27)(2023)10700-10710. [29] D.Y. Gu, T. Yang, L.F. Xie, Mixing characteristics of shear-thinning fluids in a fractal perforating impeller stirred reactor, Ind. Eng. Chem. Res. 62(28)(2023)11194-11205. [30] P.C. Luo, J. Wu, X. Pan, Y.Q. Zhang, H. Wu, Gas-liquid mass transfer behavior in a surface-aerated vessel stirred by a novel long-short blades agitator, AIChE J. 62(4)(2016)1322-1330. [31] M. Kordas, G. Story, M. Konopacki, R. Rakoczy, Study of mixing time in a liquid vessel with rotating and reciprocating agitator, Ind. Eng. Chem. Res. 52(38)(2013)13818-13828. [32] Z. Zhang, G.R. Chen, Liquid mixing enhancement by chaotic perturbations in stirred tanks, Chaos, Solit. Fractals 36(1)(2008)144-149. [33] D.J. Lamberto, F.J. Muzzio, P.D. Swanson, A.L. Tonkovich, Using time-dependent RPM to enhance mixing in stirred vessels, Chem. Eng. Sci. 51(5)(1996)733-741. [34] F. Strȩk, J. Karcz, Experimental studies of power consumption for agitated vessels equipped with non-standard baffles and high-speed agitator, Chem. Eng. Process. Process. Intensif. 32(6)(1993)349-357. [35] F.L. Yang, S.J. Zhou, G.C. Wang, F.J. Hu, Study on the hydrodynamics of a stirred tank equipped with non-standard baffles, J. Chem. Eng. Chin. Univ. 26(6)(2012)952-958(, in Chinese). [36] X.X. Wang, Z.Y. Liu, W.M. Long, D.F. Lyu, Research on flow field in elliptic bottom stirred tank with cruciform baffles, Chin. J. Mech. Eng. 50(6)(2014)156-164,(in Chinese). [37] X. Xiong, Z.H. Liu, C.Y. Tao, Y.D. Wang, F.Q. Cheng, H. Li, Reduced power consumption in stirred vessel with high solid loading by equipping punched baffles, Chin. J. Chem. Eng. 56(2023)203-214. [38] C. Sirasitthichoke, P.M. Armenante, Power dissipation and power number correlations for a retreat-blade impeller under different baffling conditions, Ind. Eng. Chem. Res. 56(36)(2017)10123-10133. [39] V. Buwa, A. Dewan, A.F. Nassar, F. Durst, Fluid dynamics and mixing of single-phase flow in a stirred vessel with a grid disc impeller:experimental and numerical investigations, Chem. Eng. Sci. 61(9)(2006)2815-2822. [40] A. Kazemzadeh, F. Ein-Mozaffari, A. Lohi, L. Pakzad, Investigation of hydrodynamic performances of coaxial mixers in agitation of yield-pseudoplasitc fluids:single and double central impellers in combination with the anchor, Chem. Eng. J. 294(2016)417-430. [41] Y.Y. Bao, Y. Lu, Q.Q. Liang, L. Li, Z.M. Gao, X.B. Huang, S. Qin, Power demand and mixing performance of coaxial mixers in a stirred tank with CMC solution, Chin. J. Chem. Eng. 23(4)(2015)623-632. [42] M.M. Buffo, L.J. Correa, M.N. Esperanca, A.J.G. Cruz, C.S. Farinas, A.C. Badino, Influence of dual-impeller type and configuration on oxygen transfer, power consumption, and shear rate in a stirred tank bioreactor, Biochem. Eng. J. 114(2016)130-139. [43] A. Paglianti, G. Montante, Simultaneous measurements of liquid velocity and tracer concentration in a continuous flow stirred tank, Chem. Eng. Sci. 216(2020)115495. [44] Z. Jaworski, W. Bujalski, N. Otomo, A.W. Nienow, CFD study of homogenization with dual rushton turbines-comparison with experimental results:Part I:initial studies, Chem. Eng. Res. Des. 78(3)(2000)327-333. [45] H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics:the Finite Volume Method, World Book Inc., Chicago, 2010. |