[1] M. Szwarc,‘living' polymers, Nature 178(4543)(1956)1168-1169. [2] A. Hirao, R. Goseki, T. Ishizone, Advances in living anionic polymerization:from functional monomers, polymerization systems, to macromolecular architectures, Macromolecules 47(6)(2014)1883-1905. [3] R.B. Grubbs, R.H. Grubbs, 50th anniversary perspective:living polymerization-emphasizing the Molecule in Macromolecules, Macromolecules 50(18)(2017)6979-6997. [4] P.W. Liu, J.G. Du, Y.T. Ma, Q.Y. Wang, K.H. Lim, B.G. Li, Progress of polymer reaction engineering:from process engineering to product engineering, Chin. J. Chem. Eng. 50(2022)3-11. [5] Y.N. Zhou, J.J. Li, T.T. Wang, Y.Y. Wu, Z.H. Luo, Precision polymer synthesis by controlled radical polymerization:Fusing the progress from polymer chemistry and reaction engineering, Prog. Polym. Sci. 130(2022)101555. [6] E. Farkas, Z.G. Meszena, A.F. Johnson, Molecular weight distribution design with living polymerization reactions, Ind. Eng. Chem. Res. 43(23)(2004)7356-7360. [7] L. Xie, L.T. Zhu, Z.H. Luo, Computational fluid dynamics simulation of multiscale mixing in anionic polymerization tubular reactors, Chem. Eng. Technol. 39(5)(2016)857-864. [8] E. Mastan, J.P. He, Continuous production of multiblock copolymers in a loop reactor:when living polymerization meets flow chemistry, Macromolecules 50(23)(2017)9173-9187. [9] M. Szwarc, Living polymers. Their discovery, characterization, and properties, J. Polym. Sci. A Polym. Chem. 36(1)(1998):ix-xv. [10] C. Carvajal, K.J. Tolle, J. Smid, M. Szwarc, Studies of solvation phenomena of ions and ion pairs in dimethoxyethane and tetrahydrofuran, J. Am. Chem. Soc. 87(24)(1965)5548-5553. [11] Y.N. Zhou, J.J. Li, Y.Y. Wu, Z.H. Luo, Role of external field in polymerization:mechanism and kinetics, Chem. Rev. 120(5)(2020)2950-3048. [12] D. Baskaran, Strategic developments in living anionic polymerization of alkyl (meth) acrylates, Prog. Polym. Sci. 28(4)(2003)521-581. [13] S.D. Robertson, M. Uzelac, R.E. Mulvey, Alkali-metal-mediated synergistic effects in polar main group organometallic chemistry, Chem. Rev. 119(14)(2019)8332-8405. [14] X.R. Zheng, Z.H. Xi, L. Zhao, Solvent strategy toward living cationic polymerization of trichloro (N-silyl) phosphoranimine based on Density Functional Calculations and experimental verification, Chem. Eng. J. 377(2019)120004. [15] C. Hahn, M. Rauschenbach, H. Frey, Merging styrene and diene structures to a cyclic diene:anionic polymerization of 1-vinylcyclohexene (VCH), Angew. Chem. Int. Ed. 62(28)(2023) e202302907. [16] D.J. Worsfold, S. Bywater, Anionic polymerization of styrene, Can. J. Chem. 38(10)(1960)1891-1900. [17] S. Bywater, D. J. Worsfold, Anionic polymerization of styrene effect of tetrahydrofuran, Can. J. Chem. 40(8)(1962)1564-1570. [18] H. Morita, M. Van Beylen, The mechanism of the propagation in the anionic polymerization of polystyryllithium in non-polar solvents elucidated by density functional theory calculations. A study of the negligible part played by dimeric ion-pairs under usual polymerization conditions, Polymers 11(6)(2019)1022. [19] T. Takagi, T. Toda, M. Miya, K. Takenaka, DFT study on the anionic polymerization of phenyl-substituted [3] dendralene derivatives:reactivities of monomer and chain end carbanion, Polym. J. 54(5)(2022)643-652. [20] T.E. Long, H.Y. Liu, B.A. Schell, D.M. Teegarden, D.S. Uerz, Determination of solution polymerization kinetics by near-infrared spectroscopy. 1. Living anionic polymerization processes, Macromolecules 26(23)(1993)6237-6242. [21] E. Rieger, T. Gleede, K. Weber, A. Manhart, M. Wagner, F.R. Wurm, The living anionic polymerization of activated aziridines:a systematic study of reaction conditions and kinetics1, Polym. Chem. 8(18)(2017)2824-2832. [22] K.F. O'Driscoll, A.V. Tobolsky, Kinetics of anionic polymerization of styrene, J. Polym. Sci. 35(128)(1959)259-265. [23] F.S. Dainton, K.J. Ivin, R.T. LaFlair, Kinetics of anionic polymerization of styrene in tetrahydropyran, Eur. Polym. J. 5(3)(1969)379-386. [24] A.V. Yakimansky, A.H.E. Muller, M. Van Beylen, Density functional theory study on the aggregation and dissociation behavior of lithium chloride in THF and its interaction with the active centers of the anionic polymerization of methyl methacrylate and styrene, Macromolecules 33(15)(2000)5686-5692. [25] O. Tai, R. Hopson, P.G. Williard, Aggregation and solvation of n-butyllithium, Org. Lett. 19(15)(2017)3966-3969. [26] M.P. Crockett, J. Pina, A.R. Gogoi, R.F. Lalisse, A.V. Nguyen, O. Gutierrez, A.A. Thomas, Breaking the tert-butyllithium contact ion pair:a gateway to alternate selectivity in lithiation reactions, J. Am. Chem. Soc. 145(19)(2023)10743-10755. [27] D. Margerison, J.P. Newport, Degree of association of n-butyl lithium in hydrocarbon media, Trans. Faraday Soc. 59(0)(1963)2058-2063. [28] D.R. D'hooge, P.H.M. Van Steenberge, M.F. Reyniers, G.B. Marin, The strength of multi-scale modeling to unveil the complexity of radical polymerization, Prog. Polym. Sci. 58(2016)59-89. [29] T. Qin, Z.H. Xi, L. Zhao, W.K. Yuan, Monte Carlo simulation of sequential structure control of AN-MA-IA aqueous copolymerization by different operation modes, Chin. J. Chem. Eng. 46(2022)231-242. [30] M. Edeleva, P.H.M. Van Steenberge, M.K. Sabbe, Connecting gas-phase computational chemistry to condensed phase kinetic modeling:The state-of-the-art, Polymers 13(18)(2021)3027. [31] S. Li, C. Bian, Z.X. Liu, Y.N. Zhou, Z.H. Luo, Identifying the essential roles of light and sonication in dual-stimuli regulated bulk atom transfer radical polymerization by multiscale simulation, AlChE. J. 69(10)(2023) e18155. [32] C. Bian, S. Li, N.T. Yang, H. Chen, W. Feng, Y.N. Zhou, Z.H. Luo, In-depth mechanistic and kinetic investigation of sonochemically mediated atom transfer radical polymerization using modeling approach, Chem. Eng. J. 464(2023)142642. [33] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 16 Rev. A.03, Wallingford, CT,(2016). [34] A.V. Marenich, C.J. Cramer, D.G. Truhlar, Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies, J. Phys. Chem. B 113(14)(2009)4538-4543. [35] T. Lu, Q.X. Chen, Shermo:a general code for calculating molecular thermochemistry properties, Comput. Theor. Chem. 1200(2021)113249. [36] S. Boresch, F. Tettinger, M. Leitgeb, M. Karplus, Absolute binding free energies:A quantitative approach for their calculation, J. Phys. Chem. B 107(35)(2003)9535-9551. [37] H. Eyring, The activated complex in chemical reactions, J. Chem. Phys. 3(2)(1935)107-115. [38] C. Doubleday, R. Armas, D. Walker, C.V. Cosgriff, E.M. Greer, Heavy-atom tunneling calculations in thirteen organic reactions:tunneling contributions are substantial, and Bell's formula closely approximates multidimensional tunneling at ≥250 K, Angew. Chem. Int. Ed Engl. 56(42)(2017)13099-13102. [39] T. Lu, F.W. Chen, Multiwfn:a multifunctional wavefunction analyzer, J. Comput. Chem. 33(5)(2012)580-592. [40] W. Humphrey, A. Dalke, K. Schulten, VMD:visual molecular dynamics, J. Mol. Graph. 14(1)(1996)33-38, 27-28. [41] T. Lu, Q.X. Chen, Simple, efficient, and universal energy decomposition analysis method based on dispersion-corrected density functional theory, J. Phys. Chem. A 127(33)(2023)7023-7035. [42] E. Mastan, S.P. Zhu, Method of moments:a versatile tool for deterministic modeling of polymerization kinetics, Eur. Polym. J. 68(2015)139-160. [43] Y.N. Zhou, Z.H. Luo, State-of-the-art and progress in method of moments for the model-based reversible-deactivation radical polymerization, Macromol. React. Eng. 10(6)(2016)516-534. [44] D.R. D'Hooge, M.F. Reyniers, G.B. Marin, Methodology for kinetic modeling of atom transfer radical polymerization, Macromol. React. Eng. 3(4)(2009)185-209. [45] J. Liu, T.T. Wang, Z.H. Luo, Y.N. Zhou, In silico mechanically mediated atom transfer radical polymerization:a detailed kinetic study, AlChE. J. 67(5)(2021) e17151. [46] Y.Y. Wu, F.L. Figueira, M. Edeleva, P.H.M. Van Steenberge, D.R. D'Hooge, Y.N. Zhou, Z.H. Luo, Cost-efficient modeling of distributed molar mass and topological variations in graft copolymer synthesis by upgrading the method of moments, AlChE. J. 68(4)(2022) e17559. [47] P. Deglmann, I. Muller, F. Becker, A. Schafer, K.D. Hungenberg, H.Weiss, Prediction of propagation rate coefficients in free radical solution polymerization based on accurate quantum chemical methods:vinylic and related monomers, including acrylates and acrylic acid, Macromol. React. Eng. 3(9)(2009)496-515. [48] Degirmenci, V. Aviyente, V. Van Speybroeck, M. Waroquier, DFT study on the propagation kinetics of free-radical polymerization of α-substituted acrylates, Macromolecules 42(8)(2009)3033-3041. [49] T. Lu, Q.X. Chen, Independent gradient model based on Hirshfeld partition:a new method for visual study of interactions in chemical systems, J. Comput. Chem. 43(8)(2022)539-555. [50] M. Glassner, D.R. D'hooge, J.Y. Park, P.H.M. Van Steenberge, B.D. Monnery, M.F. Reyniers, R. Hoogenboom, Systematic investigation of alkyl sulfonate initiators for the cationic ring-opening polymerization of 2-oxazolines revealing optimal combinations of monomers and initiators, Eur. Polym. J. 65(2015)298-304. |