[1] M.H. Abraham, Application of solvation equations to chemical and biochemical processes, Pure Appl. Chem. 65(12)(1993)2503-2512. [2] D. Shivakumar, Y.Q. Deng, B. Roux, Computations of absolute solvation free energies of small molecules using explicit and implicit solvent model, J. Chem. Theory Comput. 5(4)(2009)919-930. [3] J.L. England, G. Haran, Role of solvation effects in protein denaturation:from thermodynamics to single molecules and back, Annu. Rev. Phys. Chem. 62(2011)257-277. [4] C. Reichardt, T. Welton, Solvents and solvent effects in organic chemistry. Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim, Germany 2010.(2010). [5] F. Hirata, Molecular theory of solvation. vol. 24, Springer Science&Business Media. 2003. [6] J. Tomasi, B. Mennucci, R. Cammi, Quantum mechanical continuum solvation models, Chem. Rev. 105(8)(2005)2999-3093. [7] B. Mennucci, R. Cammi, Continuum solvation models in chemical physics:from theory to applications, John Wiley&Sons, Ltd. 2008. [8] R. Bini, C. Chiappe, V.L. Mestre, C.S. Pomelli, T. Welton, A rationalization of the solvent effect on the Diels-Alder reaction in ionic liquids using multiparameter linear solvation energy relationships, Org. Biomol. Chem. 6(14)(2008)2522-2529. [9] E.J. Corey, Catalytic enantioselective Diels:alder reactions:methods, mechanistic fundamentals, pathways, and applications, Angew. Chem. Int. Ed Engl. 41(10)(2002)1650-1667. [10] K.C. Nicolaou, S.A. Snyder, T. Montagnon, G. Vassilikogiannakis, The Diels:alder reaction in total synthesis, Angew. Chem. Int. Ed Engl. 41(10)(2002)1668-1698. [11] M.S. Chauhan, P. Kumar, S. Singh, Synthesis of MacMillan catalyst modified with ionic liquid as a recoverable catalyst for asymmetric Diels-Alder reaction, RSC Adv. 5(65)(2015)52636-52641. [12] C. Chiappe, M. Malvaldi, C.S. Pomelli, The solvent effect on the Diels-Alder reaction in ionic liquids:multiparameter linear solvation energy relationships and theoretical analysis, Green Chem. 12(8)(2010)1330. [13] B. Bittner, E. Milchert, E. Janus, Mg (OTf)2+ionic liquid-recyclable catalytic system in diels-alder reaction, PJCT 12(3)(2010)3-5. [14] G.V. Kumar, A. Rajendran, Sustainable diels-alder syntheses in imidazolium ionic liquids, Synth. Commun. 46(6)(2016)483-496. [15] R.D. Rogers, K.R. Seddon, Chemistry. ionic liquids:solvents of the future?Science 302(5646)(2003)792-793. [16] T. Welton, Room-temperature ionic liquids. solvents for synthesis and catalysis, Chem. Rev. 99(8)(1999)2071-2084. [17] K.M. Docherty, C.F. Kulpa Jr, Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids, Green Chem. 7(4)(2005)185. [18] Q. Liao, C.L. Hussey, Densities, viscosities, and conductivities of mixtures of benzene with the lewis acidic aluminum chloride+1-methyl-3-ethylimidazolium chloride molten salt, J. Chem. Eng. Data 41(5)(1996)1126-1130. [19] K.R. Seddon, Room-temperature ionic liquids:Neoteric solvents for clean catalysis, Kinet. Catal. 37(5)(1996)693-697. [20] K.N. Marsh, A. Deev, A.C.T. Wu, E. Tran, A. Klamt, Room temperature ionic liquids as replacements for conventional solvents-A review, Korean J. Chem. Eng. 19(3)(2002)357-362. [21] D.A. Jaeger, C.E. Tucker, Diels-Alder reactions in ethylammonium nitrate, a low-melting fused salt, Tetrahedron Lett. 30(14)(1989)1785-1788. [22] C.E. Song, E.J. Roh, S.G. Lee, W.H. Shim, J.H. Choi, Ionic liquids as powerful media in scandium triflate catalysed Diels-Alder reactions:significant rate acceleration, selectivity improvement and easy recycling of catalyst, Chem. Commun.(12)(2001)1122-1123. [23] H.Y. Zhu, Y. Li, H.R. Ren, D. Zhou, J.Z. Yin, Molecular dynamics simulation of supercritical CO2 microemulsion with ionic liquid domains:structures and properties, Chin. J. Chem. Eng. 27(11)(2019)2653-2658. [24] X.Z. Wang, X.G. Li, J. Yue, Y.M. Cheng, K. Xu, Q. Wang, F. Fan, Z.H. Wang, Z.L. Cui, Fabrication of poly (vinylidene fluoride) membrane via thermally induced phase separation using ionic liquid as green diluent, Chin. J. Chem. Eng. 28(5)(2020)1415-1423. [25] H.B. Song, L. Liu, B.X. Feng, H.Z. Wang, M. Xiao, H.J. Gai, Y.B. Tang, X.F. Qu, T.T. Huang, Modified g-C3N4 derived from ionic liquid and urea for promoting visible-light photodegradation of organic pollutants, Chin. J. Chem. Eng. 40(2021)293-303. [26] G.H. Zhou, K. Jiang, Z.L. Wang, X.M. Liu, Insight into the behavior at the hygroscopicity and interface of the hydrophobic imidazolium-based ionic liquids, Chin. J. Chem. Eng. 31(2021)42-55. [27] D. Akgul, S.A. Cinar, V. Aviyente, Role of ionic liquids on the selectivity and the rate of organic reactions:a computational approach, J. Mol. Graph. Model. 88(2019)309-317. [28] J. Chandrasekhar, S. Shariffskul, W.L. Jorgensen, QM/MM simulations for diels-alder reactions in water:contribution of enhanced hydrogen bonding at the transition state to the solvent effect, J. Phys. Chem. B 106(33)(2002)8078-8085. [29] J. DeChancie, O. Acevedo, J.D. Evanseck, Density functional theory determination of an axial gateway to explain the rate and endo selectivity enhancement of Diels-Alder reactions by bis (oxazoline)-Cu (II), J. Am. Chem. Soc. 126(19)(2004)6043-6047. [30] O. Acevedo, W.L. Jorgensen, Understanding rate accelerations for diels-alder reactions in solution using enhanced QM/MM methodology, J. Chem. Theory Comput. 3(4)(2007)1412-1419. [31] W. Stefaniak, E. Janus, E. Milchert, Diels-alder reaction of cyclopentadiene and alkyl acrylates in the presence of pyrrolidinium ionic liquids with various anions, Catal. Lett. 141(5)(2011)742-747. [32] J.P. Hallett, T. Welton, Room-temperature ionic liquids:solvents for synthesis and catalysis. 2, Chem. Rev. 111(5)(2011)3508-3576. [33] B. Wu, W.W. Liu, Y.M. Zhang, H.P. Wang, Do we understand the recyclability of ionic liquids?Chemistry 15(8)(2009)1804-1810. [34] D. Sarma, A. Kumar, Rare earth metal triflates promoted Diels-Alder reactions in ionic liquids, Appl. Catal. A 335(1)(2008)1-6. [35] A. Vidis, E. Kusters, G. Sedelmeier, P.J. Dyson, Effect of Lewis acids on the Diels-Alder reaction in ionic liquids with different activation modes, J. Phys. Org. Chem. 21(4)(2008)264-270. [36] C. Chiappe, D. Pieraccini, Ionic liquids:solvent properties and organic reactivity, J. Phys. Org. Chem. 18(4)(2005)275-297. [37] C.S. Consorti, P.A.Z. Suarez, R.F. de Souza, R.A. Burrow, D.H. Farrar, A.J. Lough, W. Loh, L.H.M. da Silva, J. Dupont, Identification of 1, 3-dialkylimidazolium salt supramolecular aggregates in solution, J. Phys. Chem. B 109(10)(2005)4341-4349. [38] J. Lopes and A.A.H. Padua, Nanostructural organization in ionic liquids. J. Phys. Chem. B 110(7)(2006)3330-3335. [39] C. Chiappe, Nanostructural organization of ionic liquids:theoretical and experimental evidences of the presence of well defined local structures in ionic liquids, Monatsh. Fur Chem. Chem. Mon. 138(11)(2007)1035-1043. [40] D. Xiao, J.R. Rajian, L.G. Hines Jr, S.F. Li, R.A. Bartsch, E.L. Quitevis, Nanostructural organization and anion effects in the optical Kerr effect spectra of binary ionic liquid mixtures, J. Phys. Chem. B 112(42)(2008)13316-13325. [41] N.L. Lancaster, P.A. Salter, W.T. Tom, G.B. Young, Nucleophilicity in ionic liquids. 2.(1) Cation effects on halide nucleophilicity in a series of bis (trifluoromethylsulfonyl) imide ionic liquids, J. Org. Chem. 67(25)(2002)8855-8861. [42] J. Grodkowski, P. Neta, J.F. Wishart, Pulse radiolysis study of the reactions of hydrogen atoms in the ionic liquid methyltributylammonium bis[(trifluoromethyl) sulfonyl]imide, J. Phys. Chem. A 107(46)(2003)9794-9799. [43] C. Chiappe, D. Pieraccini, Kinetic study of the addition of trihalides to unsaturated compounds in ionic liquids. Evidence of a remarkable solvent effect in the reaction of ICl2-, J. Org. Chem. 69(18)(2004)6059-6064. [44] R. Bini, C. Chiappe, D. Pieraccini, P. Piccioli, C.S. Pomelli, Nucleophilic substitution of chlorobis (4-methoxyphenyl) methane:reactivity of carbenium ions in ILs-trifluoroethanol mixtures, Tetrahedron Lett. 46(39)(2005)6675-6678. [45] L. Crowhurst, R. Falcone, N.L. Lancaster, V. Llopis-Mestre, T. Welton, Using Kamlet-Taft solvent descriptors to explain the reactivity of anionic nucleophiles in ionic liquids, J. Org. Chem. 71(23)(2006)8847-8853. [46] F. D'Anna, V. Frenna, R. Noto, V. Pace, D. Spinelli, Study of aromatic nucleophilic substitution with amines on nitrothiophenes in room-temperature ionic liquids:are the different effects on the behavior of para-like and ortho-like isomers on going from conventional solvents to room-temperature ionic liquids related to solvation effects?J. Org. Chem. 71(14)(2006)5144-5150. [47] J. Harper, M. Kobrak, Understanding organic processes in ionic liquids:achievements so far and challenges remaining, Mini Rev. Org. Chem. 3(3)(2006)253-269. [48] J.P. Hallett, C.L. Liotta, G. Ranieri, T. Welton, Charge screening in the S (N)2 reaction of charged electrophiles and charged nucleophiles:an ionic liquid effect, J. Org. Chem. 74(5)(2009)1864-1868. [49] C. Chiappe, M. Malvaldi, C.S. Pomelli, Ab initio study of the diels-alder reaction of cyclopentadiene with acrolein in a ionic liquid by KS-DFT/3D-RISM-KH theory, J. Chem. Theory Comput. 6(1)(2010)179-183. [50] W.Q. Tang, C. Cai, S.L. Zhao, H.L. Liu, Development of reaction density functional theory and its application to glycine tautomerization reaction in aqueous solution, J. Phys. Chem. C 122(36)(2018)20745-20754. [51] C. Cai, W.Q. Tang, C.Z. Qiao, P. Jiang, C.J. Lu, S.L. Zhao, H.L. Liu, A reaction density functional theory study of the solvent effect in prototype SN2 reactions in aqueous solution, Phys. Chem. Chem. Phys. 21(45)(2019)24876-24883. [52] W.Q. Tang, H.P. Yu, C. Cai, T. Zhao, C.J. Lu, S.L. Zhao, X.H. Lu, Solvent effects on a derivative of 1, 3, 4-oxadiazole tautomerization reaction in water:a reaction density functional theory study, Chem. Eng. Sci. 213(2020)115380. [53] W.Q. Tang, J.H. Zhao, P. Jiang, X.F. Xu, S.L. Zhao, Z.F. Tong, Solvent effects on the symmetric and asymmetric SN2 reactions in the acetonitrile solution:a reaction density functional theory study, J. Phys. Chem. B 124(15)(2020)3114-3122. [54] W.Q. Tang, H.P. Yu, T. Zhao, L.Y. Qing, X.F. Xu, S.L. Zhao, A dynamic reaction density functional theory for interfacial reaction-diffusion coupling at nanoscale, Chem. Eng. Sci. 236(2021)116513. [55] W.Q. Tang, Z.J. Dou, Y. Li, X.F. Xu, S.L. Zhao, Transfer free energy of micro-hydrated ion clusters from water into acetonitrile solvent, Chem. Eng. Sci. 237(2021)116561. [56] S.L. Zhao, Z.H. Jin, J.Z. Wu, New theoretical method for rapid prediction of solvation free energy in water, J. Phys. Chem. B 115(21)(2011)6971-6975. [57] A. Bondi, Van der waals volumes and radii, J. Phys. Chem. 68(1964)441-451. [58] T. Lu, F.W. Chen, Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm, J. Mol. Graph. Model. 38(2012)314-323. [59] R. Evans, The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids, Adv. Phys. 28(2)(1979)143-200. [60] M. Frigo, S.G. Johnson, The design and implementation of FFTW3, Proc. IEEE 93(2)(2005)216-231. [61] R.H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5)(1995)1190-1208. [62] S.L. Zhao, R. Ramirez, R. Vuilleumier, D. Borgis, Molecular density functional theory of solvation:from polar solvents to water, J. Chem. Phys. 134(19)(2011)194102. [63] V.S. Bernales, A.V. Marenich, R. Contreras, C.J. Cramer, D.G. Truhlar, Quantum mechanical continuum solvation models for ionic liquids, J. Phys. Chem. B 116(30)(2012)9122-9129. [64] Y. Zhao, D.G. Truhlar, Density functionals with broad applicability in chemistry, Acc. Chem. Res. 41(2)(2008)157-167. [65] H.B. Schlegel, Optimization of equilibrium geometries and transition structures, J. Comput. Chem. 3(2)(1982)214-218. [66] K. Fukui, The path of chemical reactions-the IRC approach, Acc. Chem. Res. 14(12)(1981)363-368. [67] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, and D.J. Fox, Gaussian 16 Rev. C.01. 2016:Wallingford, CT. [68] S.L. Zhao, Y. Liu, X.Q. Chen, Y.X. Lu, H.L. Liu, Y. Hu, Unified framework of multiscale density functional theories and its recent applications. Mesoscale Modeling in Chemical Engineering Part II. Amsterdam:Elsevier,(2015)1-83. [69] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys. 21(6)(1953)1087-1092. [70] G.I. Guerrero-García, E. Gonzalez-Tovar, M. Olvera de la Cruz, Effects of the ionic size-asymmetry around a charged nanoparticle:unequal charge neutralization and electrostatic screening, Soft Matter 6(9)(2010)2056. [71] C. Velez, B. Doherty, O. Acevedo, Accurate diels-alder energies and Endo selectivity in ionic liquids using the OPLS-VSIL force field, Int. J. Mol. Sci. 21(4)(2020)1190. [72] D.W. Bruce, Y.N. Gao, J.N. Canongia Lopes, K. Shimizu, J.M. Slattery, Liquid-crystalline ionic liquids as ordered reaction media for the diels-alder reaction, Chem. Weinheim Der Bergstrasse Ger. 22(45)(2016)16113-16123. |