[1] X.G. San, Y. Zhang, W.J. Shen, N. Tsubaki, New synthesis method of ethanol from dimethyl ether with a synergic effect between the zeolite catalyst and metallic catalyst, Energy Fuels 23(5)(2009)2843-2844. [2] V. Subramani, S.K. Gangwal, A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol, Energy Fuels 22(2)(2008)814-839. [3] H. Zhou, W.L. Zhu, L. Shi, H.C. Liu, S.P. Liu, S.T. Xu, Y.M. Ni, Y. Liu, L.N. Li, Z.M. Liu, Promotion effect of Fe in mordenite zeolite on carbonylation of dimethyl ether to methyl acetate, Catal. Sci. Technol. 5(3)(2015)1961-1968. [4] J.J. Li, Y.L. Zhang, Y.L. Yang, X.M. Zhang, N.N. Wang, Y.H. Zheng, Y.J. Tian, K.C. Xie, Life cycle assessment and techno-economic analysis of ethanol production via coal and its competitors:A comparative study, Appl. Energy 312(2022)118791. [5] X.Y. Xu, Y. Liu, F. Zhang, W. Di, Y.L. Zhang, Clean coal technologies in China based on methanol platform, Catal. Today 298(2017)61-68. [6] J.J. Li, W.J. Cheng, Comparison of life-cycle energy consumption, carbon emissions and economic costs of coal to ethanol and bioethanol, Appl. Energy 277(2020)115574. [7] S.Y. Huang, Y. Wang, J. Lü, Y.J. Zhao, S.P. Wang, X.B. Ma, Advances in indirect synthesis of ethanol from syngas via dimethyl ether/methyl acetate, CIESC J 67(1)(2016)240-247.(in Chinese) [8] H. Wang, Z.L. Wu, Z.J. Tai, R.Y. Pei, X.G. Ren, Advances in synthesis of anhydrous ethanol from syngas via carbonylation of dimethyl ether and hydrogenation of methyl acetate, Chem. Ind. Eng. Prog. 38(10)(2019)4497-4503. [9] C. Hua, H. Wang, P. Lu, J. Chen, F. Bai, A separation device and method for coal-to-ethanol liquid phase products, CN Pat., 111377800A, Tianjin, 2022. [10] J. Sun, D. Liu, J. Wang, A novel separation device and separation method for coal-to-ethanol liquid phase products Beijing:CN114225456A, 2020-07-07. [11] D.Y. Liu, H. Lyu, J.H. Wang, C.T. Cui, J.S. Sun, Comparison of coal-to-ethanol product separation strategies, Sep. Purif. Technol. 301(2022)121968. [12] A. Aggarwal, C.A. Floudas, Synthesis of general distillation sequences-nonsharp separations, Comput. Chem. Eng. 14(6)(1990)631-653. [13] L. Mencarelli, Q. Chen, A. Pagot, I.E. Grossmann, A review on superstructure optimization approaches in process system engineering, Comput. Chem. Eng. 136(2020)106808. [14] H. Yeomans, I.E. Grossmann, A systematic modeling framework of superstructure optimization in process synthesis, Comput. Chem. Eng. 23(6)(1999)709-731. [15] E.M.B. Smith, C.C. Pantelides, Design of reaction/separation networks using detailed models, Comput. Chem. Eng. 19(1995)83-88. [16] G.R. Kocis, I.E. Grossmann, Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis, Ind. Eng. Chem. Res. 27(8)(1988)1407-1421. [17] S. Zhang, Y.Q. Luo, X.G. Yuan, Synthesis of simultaneously heat integrated and thermally coupled nonsharp distillation sequences based on stochastic optimization, Comput. Chem. Eng. 127(2019)158-174. [18] J. Leboreiro, J. Acevedo, Processes synthesis and design of distillation sequences using modular simulators:A genetic algorithm framework, Comput. Chem. Eng. 28(8)(2004)1223-1236. [19] W.Z. An, X.G. Yuan, A simulated annealing-based approach to the optimal synthesis of heat-integrated distillation sequences, Comput. Chem. Eng. 33(1)(2009)199-212. [20] S. Lee, J.S. Logsdon, M.J. Foral, I.E. Grossmann, Superstructure optimization of the olefin separation process, Comput. Aided Chem. Eng. 14(2003)191-196. [21] F. Trespalacios, I. Grossmann, Review of mixed-integer nonlinear and generalized disjunctive programming methods, Chem. Ing. Tech. 86(7)(2014)991-1012. [22] H. Lyu, X.D. Zhang, C.T. Cui, J.S. Sun, Adaptive superstructure for multiple-interconnection process synthesis:Eliminate unnecessary flowsheet predetermination to reduce complexity, Chem. Eng. Process. Process. Intensif. 171(2022)108731. [23] H. Lyu, S.H. Li, C.T. Cui, X.G. Yu, J.S. Sun, Superstructure modeling and stochastic optimization of side-stream extractive distillation processes for the industrial separation of benzene/cyclohexane/cyclohexene, Sep. Purif. Technol. 257(2021)117907. [24] X.D. Zhang, L. Jin, H. Lyu, J. He, J.S. Sun, Optimal synthesis of quaternary zeotropic distillation sequences using an array formulation, Ind. Eng. Chem. Res. 61(51)(2022)18821-18832. [25] S. Das, P.N. Suganthan, Differential evolution:A survey of the state-of-the-art, IEEE Trans. Evol. Comput. 15(1)(2011)4-31. [26] W.L. Luyben, I.L. Chien, Design and Control of Distillation Systems for Separating Azeotropes. John Wiley&Sons, Inc., 2010. [27] J.H. Wang, H. Lyu, D.Y. Liu, C.T. Cui, J.S. Sun, Optimization and simultaneous heat integration design of a coal-based ethylene glycol refining process by a parallel differential evolution algorithm, Front. Chem. Sci. Eng. 17(9)(2023)1280-1288. [28] J. Leboreiro, J. Acevedo, Processes synthesis and design of distillation sequences using modular simulators:A genetic algorithm framework, Comput. Chem. Eng. 28(8)(2004)1223-1236. [29] X.D. Zhang, L. Jin, J.S. Sun, Optimal synthesis of heat-integrated distillation configurations using the two-column superstructure, Chin. J. Chem. Eng.(2023). [30] L. Jin, X.D. Zhang, C.T. Cui, Z.J. Xi, J.S. Sun, Simultaneous process parameters and heat integration optimization for industrial organosilicon production, Sep. Purif. Technol. 265(2021)118520. [31] H. Lyu, C.T. Cui, X.D. Zhang, J.S. Sun, Population-distributed stochastic optimization for distillation processes:Implementation and distribution strategy, Chem. Eng. Res. Des. 168(2021)357-368. [32] O. Yeniay, Penalty function methods for constrained optimization with genetic algorithms, Math. Comput. Appl. 10(1)(2005)45-56. |