[1] H.F. Zhang, Y.B. Wei, S.F. Niu, H. Qi, Fabrication of Pd-Nb bimetallic doped organosilica membranes by different metal doping routes for H2/CO2 separation, Chin, J. Chem. Eng. 36(2021) 67-75. [2] Y. Shinoda, M. Takeuchi, H. Mizukami, N. Dezawa, Y. Komo, T. Harada, H. Takasu, Y. Kato, Characterization of Pd60Cu40 composite membrane prepared by a reverse build-up method for hydrogen purification, Energies 14(24) (2021) 8262. [3] X.H. Ruan, W.B. Huo, J.M. Wang, M.G. Guo, W.J. Zheng, Y. Zou, A.B. Huang, J.X. Shou, G.H. He, Multi-technique integration separation frameworks after steam reforming for coal-based hydrogen generation, Chin. J. Chem. Eng. 35(2021) 163-172. [4] F.R. Li, G.X. Duan, Z.G. Wang, D. Liu, Y.F. Cui, S. Kawi, S.M. Liu, X.Y. Tan, Highly efficient recovery of hydrogen from dilute H2-streams using BaCe0.7Zr0.1Y0.2 O3-d/Ni-BaCe0.7Zr0.1Y0.2O3-d dual-layer hollow fiber membrane, Sep. Purif. Technol. 287(2022) 120602. [5] J.Q. Zhu, J.Z. Cui, Y.X. Zhang, Z. Liu, C. Zhou, S.S. Bi, J.Y. Ma, J. Zhou, Z.W. Hu, T. Liu, Z. Li, X.Y. Zhao, J.Q. Wang, L.J. Zhang, Enhanced H2 permeation and CO2 tolerance of self-assembled ceramic-metal-ceramic BZCYYb-Ni-CeO2 hybrid membrane for hydrogen separation, J. Energy Chem. 82(2023) 47-55. [6] S.Z. Song, W. Wang, Y.L. Zhao, W.F. Wu, Y.Y. Wei, H.H. Wang, Tuning the stacking modes of ultrathin two-dimensional metal-organic framework nanosheet membranes for highly efficient hydrogen separation, Angew. Chem., Int. Ed. Engl. 62(45) (2023) -202312995. [7] G. Bernardo, T. Araújo, T. da Silva Lopes, J. Sousa, A. Mendes, Recent advances in membrane technologies for hydrogen purification, Int. J. Hydrogen Energy 45(12) (2020) 7313-7338. [8] R.F. Zhou, Y.C. Pan, W.H. Xing, N.P. Xu, Advanced microporous membranes for H2/CH4 separation: Challenges and perspectives, Adv. Membr. 1(2021) 100011. [9] L. Wei, J. Yu, X.J. Hu, R.X. Wang, Y. Huang, Effects of Sn residue on the high temperature stability of the H2-permeable palladium membranes prepared by electroless plating on Al2O3 substrate after SnCl2-PdCl2 process: A case study, Chin. J. Chem. Eng. 24(9) (2016) 1154-1160. [10] M. El-Shafie, S. Kambara, Y. Hayakawa, Comparative study on the numerical simulation of hydrogen separation through palladium and palladiumecopper membranes, Int. J. Hydrogen Energy 47(54) (2022) 22819-22831. [11] A.L. Job, C. Li, C.M. Burst, J. Douglas Way, C.A. Wolden, Zirconium nitride intermetallic diffusion barriers enable stable hydrogen permeation in palladiumevanadium composite membranes, J. Membr. Sci. 685(2023) 121930. [12] J.M. Sáanchez, M.M. Barreiro, M. Marono, Bench-scale study of separation of ~ hydrogen from gasification gases using a palladium-based membrane reactor, Fuel 116(2014) 894-903. [13] C. Brencio, R. Gough, A. de Leeuw den Bouter, A. Arratibel, L. Di Felice, F. Gallucci, Kinetic model for Pd-based membranes coking/deactivation in propane dehydrogenation processes, Chem. Eng. J. 452(2023) 139125. [14] M. Hasany, M. Malakootikhah, V. Rahmanian, S. Yaghmaei, Effect of hydrogen combustion reaction on the dehydrogenation of ethane in a fixed-bed catalytic membrane reactor, Chin. J. Chem. Eng. 23(8) (2015) 1316-1325. [15] S.M. Jokar, A. Farokhnia, M. Tavakolian, M. Pejman, P. Parvasi, J. Javanmardi, F. Zare, M.C. Gonçalves, A. Basile, The recent areas of applicability of palladium based membrane technologies for hydrogen production from methane and natural gas: a review, Int. J. Hydrogen Energy 48(16) (2023) 6451-6476. [16] G.Z. Ji, M. Zhao, G. Wang, Computational fluid dynamic simulation of a sorption-enhanced palladium membrane reactor for enhancing hydrogen production from methane steam reforming, Energy 147(2018) 884-895. [17] H. Jowkary, M. Farsi, M.R. Rahimpour, Supporting the propane dehydrogenation reactors by hydrogen permselective membrane modules to produce ultra-pure hydrogen and increasing propane conversion: Process modeling and optimization, Int. J. Hydrogen Energy 45(12) (2020) 7364-7373. [18] Y. Huang, S.L. Shu, Z. Lu, Y.Q. Fan, Characterization of the adhesion of thin palladium membranes supported on tubular porous ceramics, Thin Solid Films 515(13) (2007) 5233-5240. [19] Z.W. Dunbar, I.C. Lee, Effects of elevated temperatures and contaminated hydrogen gas mixtures on novel ultrathin palladium composite membranes, Int. J. Hydrogen Energy 42(49) (2017) 29310-29319. [20] J.F. Yu, J.X. Zhang, C. Bao, Z. Zhang, H. Li, H.Y. Xu, Controllable growth of defect-free zeolite protective layer on the surface of Pd membrane for chemical stability enhancement, Microporous Mesoporous Mater. 244(2017) 119-126. [21] S. Abate, U. Díaz, A. Prieto, S. Gentiluomo, M. Palomino, S. Perathoner, A. Corma, G. Centi, Influence of zeolite protective overlayer on the performances of Pd thin film membrane on tubular asymmetric alumina supports, Ind. Eng. Chem. Res. 55(17) (2016) 4948-4959. [22] J.F. Yu, C.C. Qi, J.X. Zhang, C. Bao, H.Y. Xu, Synthesis of a zeolite membrane as a protective layer on a metallic Pd composite membrane for hydrogen purification, J. Mater. Chem. A 3(9) (2015) 5000-5006. [23] S.H. Jung, K. Kusakabe, S. Morooka, S.D. Kim, Effects of co-existing hydrocarbons on hydrogen permeation through a palladium membrane, J. Membr. Sci. 170(1) (2000) 53-60. [24] H. Li, A. Goldbach, W.Z. Li, H.Y. Xu, On CH4 decomposition during separation from H2 mixtures with thin Pd membranes, J. Membr. Sci. 324(1-2) (2008) 95-101. [25] N. Vicinanza, I.H. Svenum, L.N. Næss, T.A. Peters, R. Bredesen, A. Borg, H.J. Venvik, Thickness dependent effects of solubility and surface phenomena on the hydrogen transport properties of sputtered Pd77%Ag23% thin film membranes, J. Membr. Sci. 476(2015) 602-608. [26] O. Opetubo, A.I. Ibitoye, S.T. Oyinbo, T.C. Jen, Analysis of hydrogen embrittlement in palladiumecopper alloys membrane from first principal method using density functional theory, Vacuum 205(2022) 111439. [27] H. Kurokawa, H. Yakabe, I. Yasuda, T. Peters, R. Bredesen, Inhibition effect of CO on hydrogen permeability of PdeAg membrane applied in a microchannel module configuration, Int. J. Hydrogen Energy 39(30) (2014) 17201-17209. [28] M.L. Bosko, A. Dalla Fontana, A. Tarditi, L. Cornaglia, Advances in hydrogen selective membranes based on palladium ternary alloys, Int. J. Hydrogen Energy 46(29) (2021) 15572-15594. [29] A. Arratibel, A. Pacheco Tanaka, I. Laso, M. van Sint Annaland, F. Gallucci, Development of Pd-based double-skinned membranes for hydrogen production in fluidized bed membrane reactors, J. Membr. Sci. 550(2018) 536-544. [30] A. Arratibel, J.A. Medrano, J. Melendez, D.A. Pacheco Tanaka, M. van Sint Annaland, F. Gallucci, Attrition-resistant membranes for fluidized-bed membrane reactors: double-skin membranes, J. Membr. Sci. 563(2018) 419-426. [31] A. Arratibel, A. Pacheco Tanaka, M. van Sint Annaland, F. Gallucci, On the use of double-skinned membranes to prevent chemical interaction between membranes and catalysts, Int. J. Hydrogen Energy 46(38) (2021) 20240-20244. [32] Y. Guo, H.M. Wu, L.D. Zhou, Z.B. Zhang, H.O. Liu, X.F. Zhang, Fabrication of palladium membranes supported on a silicalite-1 zeolite-modified alumina tube for hydrogen separation, Chem. Eng. Technol. 37(10) (2014) 1778-1786. [33] X.F. Zhang, H.O. Liu, K.L. Yeung, Influence of seed size on the formation and microstructure of zeolite silicalite-1 membranes by seeded growth, Mater. Chem. Phys. 96(1) (2006) 42-50. [34] J.L. Zhou, X.F. Zhang, J. Zhang, H.O. Liu, L. Zhou, K. Yeung, Preparation of alkaliresistant, Sil-1 encapsulated nickel catalysts for direct internal reformingmolten carbonate fuel cell, Catal. Commun. 10(14) (2009) 1804-1807. [35] G.L. Holleck, Diffusion and solubility of hydrogen in palladium and palladium: silver alloys, J. Phys. Chem. 74(3) (1970) 503-511. [36] T.L. Ward, T.E. Dao, Model of hydrogen permeation behavior in palladium membranes, J. Membr. Sci. 153(2) (1999) 211-231. [37] Y. Guo, H.M. Wu, X.F. Fan, L.D. Zhou, Q.Q. Chen, Palladium composite membrane fabricated on rough porous alumina tube without intermediate layer for hydrogen separation, Int. J. Hydrogen Energy 42(15) (2017) 9958-9965. [38] C. Brencio, F.W.A. Fontein, J.A. Medrano, L. Di Felice, A. Arratibel, F. Gallucci, Pd-based membranes performance under hydrocarbon exposure for propane dehydrogenation processes: Experimental and modeling, Int. J. Hydrogen Energy 47(21) (2022) 11369-11384. [39] E.V. Shelepova, A.A. Vedyagin, Intensification of the dehydrogenation process of different hydrocarbons in a catalytic membrane reactor, Chem. Eng. Process. Process. Intensif. 155(2020) 108072. |