[1] T. Zhou, C.M. Gui, L.G. Sun, Y.X. Hu, H. Lyu, Z.H. Wang, Z. Song, G.Q. Yu, Energy applications of ionic liquids: recent developments and future prospects, Chem. Rev. 123 (21) (2023) 12170-12253. [2] P. Migowski, P. Lozano, J. Dupont, Imidazolium based ionic liquid-phase green catalytic reactions, Green Chem. 25 (4) (2023) 1237-1260. [3] Y.R. Gao, W.X. Zhang, L.Y. Li, Z.J. Wang, Y. Shu, J.H. Wang, Ionic liquid-based gels for biomedical applications, Chem. Eng. J. 452 (2023) 139248. [4] J.L. Shamshina, R.D. Rogers, Ionic liquids: new forms of active pharmaceutical ingredients with unique, tunable properties, Chem. Rev. 123 (20) (2023) 11894-11953. [5] S.Y. Che, J.C. Guo, L. Gan, Q.X. Xiao, H.R. Li, Y.B. She, C.M. Wang, A succinct enhanced luminescence strategy for fluorescent ionic liquids and the application for detecting CO2, Green Energy Environ. 7 (5) (2022) 1093-1101. [6] Y.L. Wang, B. Li, S. Sarman, F. Mocci, Z.Y. Lu, J.Y. Yuan, A. Laaksonen, M.D. Fayer, Microstructural and dynamical heterogeneities in ionic liquids, Chem. Rev. 120 (13) (2020) 5798-5877. [7] P. Liu, K.X. Cai, K.L. Wang, T.X. Zhao, D.J. Tao, Highly defective HKUST-1 with excellent stability and SO2 uptake: The hydrophobic armor effect of functionalized ionic liquids, Green Energy Environ. (2023). https://doi.org/10.1016/j.gee.2023.10.003. [8] L.L. Jiang, K. Mei, K.H. Chen, R.N. Dao, H.R. Li, C.M. Wang, Design and prediction for highly efficient SO2 capture from flue gas by imidazolium ionic liquids, Green Energy Environ. 7 (1) (2022) 130-136. [9] T. Li, W. Hu, Ionic liquid derived electrocatalysts for electrochemical water splitting, Green Energy Environ. 9 (4) (2024) 604-622. [10] S. Peng, B.L. Xie, Y.L. Wang, M. Wang, X.X. Chen, X.Y. Ji, C.Y. Zhao, G. Lu, D.Y. Wang, R.R. Hao, M.Z. Wang, N. Hu, H.Y. He, Y.L. Ding, S. Zheng, Low-grade wind-driven directional flow in anchored droplets, Proc. Natl. Acad. Sci. USA 120 (38) (2023) e2303466120. [11] Y.M. Lu, Y.L. Wang, F. Huo, W. Chen, M. Ma, W.L. Ding, H.Y. He, S.J. Zhang, Ultralow friction and high robustness of monolayer ionic liquids, ACS Nano 16 (10) (2022) 16471-16480. [12] S. Saha, A. Verma, K. Bandyopadhyay, Water in ionic liquids: Raman spectroscopic studies, J. Raman Spectrosc. 53 (10) (2022) 1722-1730. [13] Y.Q. He, H. Li, C.Y. Qu, W. Cao, M. Ma, Recent understanding of solid-liquid friction in ionic liquids, Green Chem. Eng. 2 (2) (2021) 145-157. [14] W. Ying, J.S. Cai, K. Zhou, D.K. Chen, Y.L. Ying, Y. Guo, X.Q. Kong, Z.P. Xu, X.S. Peng, Ionic liquid selectively facilitates CO2 transport through graphene oxide membrane, ACS Nano 12 (6) (2018) 5385-5393. [15] S.N.A. Shafie, N.A.H. Md Nordin, S.M. Racha, M.R. Bilad, M.H.D. Othman, N. Misdan, J. Jaafar, Z.A. Putra, M.D.H. Wirzal, Emerging ionic liquid engineered polymeric membrane for carbon dioxide removal: a review, J. Mol. Liq. 358 (2022) 119192. [16] C.L. Wang, Y.L. Wang, J. Liu, M. Wang, Z.D. Gan, H.Y. He, Entropy driving highly selective CO2 separation in nanoconfined ionic liquids, Chem. Eng. J. 440 (2022) 135918. [17] S. Kondrat, G. Feng, F. Bresme, M. Urbakh, A.A. Kornyshev, Theory and simulations of ionic liquids in nanoconfinement, Chem. Rev. 123 (10) (2023) 6668-6715. [18] Y.L. Wang, L. Li, Uncovering the underlying mechanisms governing the solidlike layering of ionic liquids (ILs) on mica, Langmuir 36 (11) (2020) 2743-2756. [19] Y.M. Lu, W. Chen, Y.L. Wang, F. Huo, Y.H. Dong, L. Wei, H.Y. He, Research progress on the preparation and properties of two dimensional structure of ionic liquids, Acta Chim. Sinica 79 (4) (2021) 443-458. [20] S. Bovio, A. Podesta, C. Lenardi, P. Milani, Evidence of extended solidlike layering in[Bmim][NTf2]ionic liquid thin films at room-temperature, J. Phys. Chem. B 113 (19) (2009) 6600-6603. [21] R. An, X.H. Qiu, F.U. Shah, K. Riehemann, H. Fuchs, Controlling the nanoscale friction by layered ionic liquid films, Phys. Chem. Chem. Phys. 22 (26) (2020) 14941-14952. [22] X. Gong, S. Frankert, Y.J. Wang, L. Li, Thickness-dependent molecular arrangement and topography of ultrathin ionic liquid films on a silica surface, Chem. Commun. 49 (71) (2013) 7803-7805. [23] M. Galluzzi, S. Bovio, P. Milani, A.Podesta, Surface confinement induces the formation of solid-like insulating ionic liquid nanostructures, J. Phys. Chem. C 122 (14) (2018) 7934-7944. [24] B.C. Wang, L. Li, Direct observation of the double-layering quantized growth of mica-confined ionic liquids, Nanoscale 13 (42) (2021) 17961-17971. [25] M. Meusel, M. Lexow, A. Gezmis, S. Schotz, M. Wagner, A. Bayer, F. Maier, H.P. Steinruck, Atomic force and scanning tunneling microscopy of ordered ionic liquid wetting layers from 110 K up to room temperature, ACS Nano 14 (7) (2020) 9000-9010. [26] M. Meusel, M. Lexow, A. Gezmis, A. Bayer, F. Maier, H.P. Steinruck, Growth of multilayers of ionic liquids on Au(111) investigated by atomic force microscopy in ultrahigh vacuum, Langmuir 36 (45) (2020) 13670-13681. [27] T. Niemann, H. Li, G.G. Warr, R. Ludwig, R. Atkin, Influence of hydrogen bonding between ions of like charge on the ionic liquid interfacial structure at a mica surface, J. Phys. Chem. Lett. 10 (23) (2019) 7368-7373. [28] J.W. Yan, Z.Q. Tian, B.W. Mao, Molecular-level understanding of electric double layer in ionic liquids, Curr. Opin. Electrochem. 4 (1) (2017) 105-111. [29] E.M. McIntosh, J. Ellis, A.P. Jardine, P. Licence, R.G. Jones, W. Allison, Probing liquid behaviour by helium atom scattering: surface structure and phase transitions of an ionic liquid on Au(111), Chem. Sci. 5 (2) (2014) 667-676. [30] X.W. Mao, P. Brown, C. Cervinka, G. Hazell, H. Li, Y.Y. Ren, D. Chen, R. Atkin, J. Eastoe, I. Grillo, A.A.H. Padua, M.F. Costa Gomes, T.A. Hatton, Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces, Nat. Mater. 18 (12) (2019) 1350-1357. [31] Y.X. Zhang, J.B. Marlow, W. Millar, Z.M. Aman, D.S. Silvester, G.G. Warr, R. Atkin, H. Li, Nanostructure, electrochemistry and potential-dependent lubricity of the catanionic surface-active ionic liquid[P6, 6, 6, 14][AOT, J. Colloid Interface Sci. 608 (Pt 2) (2022) 2120-2130. [32] Y.X. Zhang, M.W. Rutland, J.S. Luo, R. Atkin, H. Li, Potential-dependent superlubricity of ionic liquids on a graphite surface, J. Phys. Chem. C 125 (7) (2021) 3940-3947. [33] F. Buchner, B. Uhl, K. Forster-Tonigold, J. Bansmann, A. Gross, R.J. Behm, Structure Formation and surface chemistry of ionic liquids on model electrode surfaces-Model studies for the electrode | electrolyte interface in Li-ion batteries, J. Chem. Phys. 148 (19) (2018) 193821. [34] T.L. Sun, Y.M. Lu, J.F. Lu, H. Dong, W.L. Ding, Y.L. Wang, X.H. Yang, H.Y. He, Water-controlled structural transition and charge transfer of interfacial ionic liquids, J. Phys. Chem. Lett. 13 (31) (2022) 7113-7120. [35] W. Chen, Y.M. Lu, Y.L. Wang, F. Huo, W.L. Ding, L. Wei, H.Y. He, Probing charge injection-induced structural transition in ionic liquids confined at the MoS2 surface, Ind. Eng. Chem. Res. 60 (21) (2021) 7835-7843. [36] C.S. Perez-Martinez, S. Perkin, Interfacial structure and boundary lubrication of a dicationic ionic liquid, Langmuir 35 (48) (2019) 15444-15450. [37] A.M. Smith, M.A. Parkes, S. Perkin, Molecular friction mechanisms across nanofilms of a bilayer-forming ionic liquid, J. Phys. Chem. Lett. 5 (22) (2014) 4032-4037. [38] M. Lexow, T. Talwar, B.S.J. Heller, B. May, R.G. Bhuin, F. Maier, H.P. Steinruck, Time-dependent changes in the growth of ultrathin ionic liquid films on Ag(111), Phys. Chem. Chem. Phys. 20 (18) (2018) 12929-12938. [39] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1) (1995) 1-19. [40] W.L. Jorgensen, D.S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118 (45) (1996) 11225-11236. [41] B. Doherty, X. Zhong, S. Gathiaka, B. Li, O. Acevedo, Revisiting OPLS force field parameters for ionic liquid simulations, J. Chem. Theory Comput. 13 (12) (2017) 6131-6145. [42] R.W. Hockney, J.W. Eastwood, Computer simulation using particles, Taylor & Francis, Oxford, UK, 1988. [43] H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81 (8) (1984) 3684-3690. [44] Q. Chen, H.J. Yan, C.J. Yan, G.B. Pan, L.J. Wan, G.Y. Wen, D.Q. Zhang, STM investigation of the dependence of alkane and alkane (C18H38, C19H40) derivatives self-assembly on molecular chemical structure on HOPG surface, Surf. Sci. 602 (6) (2008) 1256-1266. [45] D. Wang, L.J. Wan, C.L. Bai, Formation and structural transition of molecular self-assembly on solid surface investigated by scanning tunneling microscopy, Mater. Sci. Eng. R Rep. 70 (3-6) (2010) 169-187. |