[1] H.J. Li, Y.T. Yao, X.Y. Yang, X.S. Zhou, R. Lei, S.F. He, Degradation of phenol by photocatalysis using TiO2/montmorillonite composites under UV light, Environ. Sci. Pollut. Res. Int. 29 (45) (2022) 68293-68305. [2] Q.Z. Qin, H. Yang, H.X. Xu, J.S. Deng, R. Zhao, G. Huang, P.H. Wang, J.Z. Wang, Experiment study on the separation of bituminous coal adsorption and the synergism of ultraviolet and electrochemistry in the pretreatment of coal chemical wastewater, Fuel 288 (2021) 119712. [3] N. Bar-Niv, H. Azaizeh, M.E. Kuc, S. Azerrad, M. Haj-Zaroubi, O. Menashe, E. Kurzbaum, Advanced oxidation process UV-H2O2 combined with biological treatment for the removal and detoxification of phenol, J. Water Process. Eng. 48 (2022) 102923. [4] T.J. Al-Musawi, M. Yilmaz, A.A. Ramirez-Coronel, G.R.L. Al-Awsi, E.R. Alwaily, A. Asghari, D. Balarak, Degradation of amoxicillin under a UV or visible light photocatalytic treatment process using Fe2O3/bentonite/TiO2: Performance, kinetic, degradation pathway, energy consumption, and toxicology studies, Optik 272 (2023) 170230. [5] S. Mohammadhosseini, T.J. Al-Musawi, R.M. Romero Parra, M. Qutob, M.A. Gatea, F. Ganji, D. Balarak, UV and visible light induced photodegradation of reactive red 198 dye and textile factory wastewater on Fe2O3/bentonite/TiO2 nanocomposite, Minerals 12 (11) (2022) 1417. [6] S. Chin, E. Park, M. Kim, J. Jeong, G.N. Bae, J. Jurng, Preparation of TiO2 ultrafine nanopowder with large surface area and its photocatalytic activity for gaseous nitrogen oxides, Powder Technol. 206 (3) (2011) 306-311. [7] T.D. Ngo Thi, L.H. Nguyen, X.H. Nguyen, H.V. Phung, T.H. The Vinh, P. Van Viet, N. Van Thai, H.N. Le, D.T. Pham, H.T. Van, L.H. Than Thi, T.D. Pham Thi, T. Le Minh, H.H. Phan Quang, H.P. Nguyen Vu, T.T. Duc, H.M. Nguyen, Enhanced heterogeneous photocatalytic perozone degradation of amoxicillin by ZnO modified TiO2 nanocomposites under visible light irradiation, Mater. Sci. Semicond. Process. 142 (2022) 106456. [8] J. Yin, G.Z. Liao, J.L. Zhou, C.M. Huang, Y. Ling, P. Lu, L.S. Li, High performance of magnetic BiFeO3 nanoparticle-mediated photocatalytic ozonation for wastewater decontamination, Sep. Purif. Technol. 168 (2016) 134-140. [9] J. Wang, G.H. Wang, X.H. Wei, G. Liu, J. Li, ZnO nanoparticles implanted in TiO2 macrochannels as an effective direct Z-scheme heterojunction photocatalyst for degradation of RhB, Appl. Surf. Sci. 456 (2018) 666-675. [10] T. Mano, S. Nishimoto, Y. Kameshima, M. Miyake, Investigation of photocatalytic ozonation treatment of water over WO3 under visible light irradiation, J. Ceram. Soc. Japan 119 (1395) (2011) 822-827. [11] T.T. Yang, J.M. Peng, Y. Zheng, X. He, Y.D. Hou, L. Wu, X.Z. Fu, Enhanced photocatalytic ozonation degradation of organic pollutants by ZnO modified TiO2 nanocomposites, Appl. Catal. B Environ. 221 (2018) 223-234. [12] X. Jiang, L. Xu, W. Ji, W.E. Wang, J. Du, L.B. Yang, W. Song, X.X. Han, B. Zhao, One plus one greater than Two: Ultrasensitive Surface-Enhanced Raman scattering by TiO2/ZnO heterojunctions based on Electron-Hole separation, Appl. Surf. Sci. 584 (2022) 152609. [13] R. Liu, W.D. Yang, L.S. Qiang, H.Y. Liu, Conveniently fabricated heterojunction ZnO/TiO2 electrodes using TiO2 nanotube arrays for dye-sensitized solar cells, J. Power Sources 220 (2012) 153-159. [14] A.A. Alameri, R.H.C. Alfilh, S.A. Awad, G.S. Zaman, T.J. Al-Musawi, M.M. Joybari, D. Balarak, G. McKay, Ciprofloxacin adsorption using magnetic and ZnO nanoparticles supported activated carbon derived from Azolla filiculoides biomass, Biomass Convers. Biorefin. (2022). [15] A. Kubiak, S. Zoltowska, A. Bartkowiak, E. Gabala, N. Sacharczuk, M. Zalas, K. Siwinska-Ciesielczyk, T. Jesionowski, The TiO2-ZnO systems with multifunctional applications in photoactive processes-efficient photocatalyst under UV-LED light and electrode materials in DSSCs, Materials (Basel) 14 (20) (2021) 6063. [16] R.M. He, Q.L. Zhang, Y.Z. Liu, J. Guo, H.Y. Shen, Preparation of Fe and Co Co-doped TiO2 by precipitation method in an impinging stream-rotating packed bed for photodegradation of phenol wastewater, Adv. Appl. Ceram. 120 (3) (2021) 134-143. [17] W.J. Chen, K.C. Hsu, T.H. Fang, T.H. Chen, M.H. Li, Characteristics and heterostructure of metal-doped TiO2/ZnO nanocatalysts, Curr. Appl. Phys. 38 (2022) 1-6. [18] H.C. Yatmaz, C. Wallis, C.R. Howarth, The spinning disc reactor: studies on a novel TiO2 photocatalytic reactor, Chemosphere 42 (4) (2001) 397-403. [19] R. Jachuck, Process intensification for responsive processing, Chem. Eng. Res. Des. 80 (3) (2002) 233-238. [20] M. Vicevic, R.J.J. Jachuck, K. Scott, J.H. Clark, K. Wilson, Rearrangement of α-pinene oxide using a surface catalysed spinning disc reactor (SDR), Green Chem. 6 (10) (2004) 533-537. [21] R. Ali Dianati, N. Mengelizadeh, M. Ali Zazouli, J. Yazdani Cherati, D. Balarak, S. Ashrafi, Photocatalytic degradation of bisphenol A by GO-TiO2 nanocomposite under ultraviolet light: synthesis, effect of parameters and mineralisation, Int. J. Environ. Anal. Chem. (2022) 1-18. [22] G.M. Sisoev, O.K. Matar, C.J. Lawrence, Gas absorption into a wavy film flowing over a spinning disc, Chem. Eng. Sci. 60 (7) (2005) 2051-2060. [23] N.C. Jacobsen, O. Hinrichsen, Micromixing efficiency of a spinning disk reactor, Ind. Eng. Chem. Res. 51 (36) (2012) 11643-11652. [24] T. Van Gerven, G. Mul, J. Moulijn, A. Stankiewicz, A review of intensification of photocatalytic processes, Chem. Eng. Process. Process. Intensif. 46 (9) (2007) 781-789. [25] Q. Qi, Y.Q. Wang, S.S. Wang, H.N. Qi, T. Wei, Y.M. Sun, Preparation of reduced graphene oxide/TiO2 nanocomposites and their photocataiytic properties, Acta Phys. Chim. Sin. 31 (12) (2015) 2332-2340. [26] M. Yilmaz, N. Mengelizadeh, M.K. Saloot, S. Shahbaksh, D. Balarak, Facile synthesis of Fe3O4/ZnO/GO photocatalysts for decolorization of acid blue 113 under solar, visible and UV lights, Mater. Sci. Semicond. Process. 144 (2022) 106593. [27] R.A. Shathy, S.A. Fahim, M. Sarker, M.S. Quddus, M. Moniruzzaman, S.M. Masum, M.A.I. Molla, Natural sunlight driven photocatalytic removal of toxic textile dyes in water using B-doped ZnO/TiO2 nanocomposites, Catalysts 12 (3) (2022) 308. [28] Y.T. Ma, S.D. Li, Photocatalytic activity of TiO2 nanofibers with doped La prepared by electrospinning method, J Chin. Chemical Soc 62 (4) (2015) 380-384. [29] L. F. Gao W, Wang YJ, Preparation of graphene /TiO2 composites and their degradation of methyl blue, J. Iron. Steel. Vanadium. Titanium, 43 (2022) 57-67. [30] N. Li, Y. Tian, J. Zhang, Z. Sun, J. Zhao, J. Zhang, W. Zuo, Precisely-controlled modification of PVDF membranes with 3D TiO2/ZnO nanolayer: enhanced anti-fouling performance by changing hydrophilicity and photocatalysis under visible light irradiation, J. Membr. Sci, 528 (2017) 359-368. [31] A. Mazabuel-Collazos, J.E. Rodriguez-Paez, Chemical synthesis and characterization of ZnO-TiO2 semiconductor nanocomposites: tentative mechanism of particle formation, J. Inorg. Organomet. Polym. Mater. 28 (5) (2018) 1739-1752. [32] L.Q. Liu, H.L. Ou, K.Q. Hong, L.X. Wang, Evidence of a strong electron-hole separation effect in ZnO@TiO2 core/shell nanowires, J. Alloys Compd. 749 (2018) 217-220. [33] R. Dhanalakshmi, A. Pandikumar, K. Sujatha, P. Gunasekaran, Photocatalytic and antimicrobial activities of functionalized silicate Sol-gel embedded ZnO-TiO2 nanocomposite materials, Mater. Express 3 (4) (2013) 291-300. [34] B. Wei, Q. Zhang, Y. Liu, L. Li, Kinetics of photocatalytic degradation of phenol wastewater in rotating disk reactor, J. Environ. Eng, 10 (2016) 1035-1039. [35] Q.Y. Xu, Study on the photocatalytic degradation of containing chromium wastewater with ZnO doped TiO2, Chem. Eng. Equip. (10) (2012) 16-19. [36] B. Wei, Q.L. Zhang, Y.Z. Liu, L. Li, J.X. Guo, Synergetic degradation of phenol wastewater by H2O2/TiO2 in SDR, Chem. Eng. China 44 (5) (2016) 11-16. [37] Q.L. Zhang, Y.T. Shi, J.B. Chang, Y.Z. Liu, B. Wei, Z. Qin, Investigation of enhancement of spinning disk reactor on the degradation of phenol wastewater by photocatalytic system, J. Chem. Eng. Japan / JCEJ 52 (6) (2019) 528-535. [38] Y.S. Shen, Y. Ku, Decomposition of gas-phase trichloroethene by the UV/TiO2 process in the presence of ozone, Chemosphere 46 (1) (2002) 101-107. [39] A. Senthilraja, B. Krishnakumar, R. Hariharan, A.J.F.N. Sobral, C. Surya, N.A.A. John, M. Shanthi, Synthesis and characterization of bimetallic nanocomposite and its photocatalytic, antifungal and antibacterial activity, Sep. Purif. Technol. 202 (2018) 373-384. [40] M.M. Ali, M.J. Haque, M.H. Kabir, M.A. Kaiyum, M.S. Rahman, Nano synthesis of ZnO-TiO2 composites by Sol-gel method and evaluation of their antibacterial, optical and photocatalytic activities, Results Mater. 11 (2021) 100199. [41] S. Lal, U. Kumar V, W. Nabgan, P. Martis, S. Sreenivasa, S.C. Sharma, M.S. Raghu, A. Alsalme, S. Akshatha, B.H. Jeon, L. Parashuram, NrGO wrapped Cu-ZrO2 as a multifunctional visible-light-sensitive catalyst for advanced oxidation of pollutants and CO2 reduction, J. Environ. Chem. Eng. 10 (3) (2022) 107679. |