[1] S. Aritome, NAND flash memory revolution, 2016 IEEE 8th International Memory Workshop (IMW), Paris, France, 2016, 1-4. [2] K.T. Park, S. Nam, D. Kim, P. Kwak, et al., Three-dimensional 128 Gb MLC vertical NAND flash memory with 24-WL stacked layers and 50 MB/s high-speed programming, IEEE J. Solid-State Circuits 50 (1) (2014) 204-213. [3] Y.H. Chang Chien, C.C. Hu, C.M. Yang, A design for selective wet etching of Si3N4/SiO2 in phosphoric acid using a single wafer processor, J. Electrochem. Soc. 165 (4) (2018) H3187. [4] C. de Buttet, O. Gourhant, R. Bouyssou, S. Zoll, Alternative to H3PO4 for Si3N4 removal by using chemical downstream etching, ECS Trans. 64 (39) (2015) 1-9. [5] K. Morita, K. Ohnaka, Novel selective etching method for silicon nitride films on silicon substrates by means of subcritical water, Ind. Eng. Chem. Res. 39 (2000) 4684-4688. [6] K.W. Teng, S.H. Tu, S.W. Hu, Y.X. Huang, Y.J. Sheng, H.K. Tsao, Abnormal redeposition of silicate from Si3N4 etching onto SiO2 surfaces in flash memory manufacturing, J. Mater. Sci. 55 (3) (2020) 1126-1135. [7] W. Wang, D. Xiang, W. Yang, H.X. Xia, H. Zhang, Numerical optimization of a chamber structure design for the wet etching, J. Synth. Cryst. 43 (5) (2014) 1110-1114. [8] W. Yang, D. Xiang, F. Du, Influence of the key structures and the main process parameters on the etching property of chamber of wet etching machine, J. Synth. Cryst. 44 (4) (2015) 1056-1062. [9] A. Pande, G. Levitin, D.S. Mui, D. Hess, Design of a novel wet-etch reactor and etch chemistries: Simulations and experimental verification, ECS Trans. 28 (2) (2010) 109-118. [10] S. Park, H. Jung, K.A. Min, J. Kim, B. Han, Unraveling the selective etching mechanism of silicon nitride over silicon dioxide by phosphoric acid: First-principles study, Appl. Surf. Sci. 551 (2021) 149376. [11] D.J. Monk, D.S. Soane, R.T. Howe, A review of the chemical reaction mechanism and kinetics for hydrofluoric acid etching of silicon dioxide for surface micromachining applications, Thin Solid Films. 232 (1) (1993) 1-12. [12] L. Liu, I. Kashkoush, G. Chen, C. Murphy, Maintaining a stable etch selectivity between silicon nitride and silicon dioxide in a hot phosphoric acid bath, ECS Trans. 11 (2) (2007) 63-70. [13] D. Bassett, W. Printz, T. Furukawa, Etching of silicon nitride in 3D NAND structures, ECS Trans. 69 (8) (2015) 159-167. [14] D.M. Knotter, The chemistry of wet etching, in: K.A. Reinhardt, R.F. Reidy (Eds.), Handbook of Cleaning in Semiconductor Manufacturing: Fundamental and Applications, Wiley, New York, 2011, pp. 95-141. [15] C.E. Morosanu, The preparation, characterization and applications of silicon nitride thin films, Thin Solid Films 65 (2) (1980) 171-208. [16] D.W. Bassett, A.L.P. Rotondaro, Silica formation during etching of silicon nitride in phosphoric acid, Solid State Phenom. 255 (2016) 285-290. [17] V.C. Chien, C.M. Yang, C.C. Hu, The etching of silicon nitride in phosphoric acid with novel single wafer processor, Proceedings of the 2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC), Saratoga Springs, NY, USA, 2019, 1-5. [18] T. Wade, High density circuit technology, Part 3, Final Contract Report Mississippi State University, 1982. [19] W.M. Moreau, Semiconductor Lithography: Principles, Practices, and Materials, Springer, Boston, 1988. [20] L. Mohr, T. Dannenberg, A. Moldovan, M. Zimmer, C. Muller, Numerical simulation of an entire wafer surface during ozone-based wet chemical etching, Ind. Eng. Chem. Res. 59 (40) (2020) 17680-17688. [21] J. Zahka, D. Grant, C. Myhaver, Modelling of particle removal from a circulating etch bath, in: K.L. Mittal (ed.), Particles in Gases and Liquids 2: Detection, Characterization and Control, Springer, New York, 1990, pp. 367-382. [22] V.K. Garg, A.A. Ameri, Two-equation turbulence models for prediction of heat transfer on a transonic turbine blade, Int. J. Heat Fluid Flow. 22 (6) (2001) 593-602. [23] Ansys Inc, ANSYS FLUENT theory guide, Canonsburg, Pa, 794 (2011). [24] Q.G. Xiong, M. Izadi, M. Shokri rad, S.A. Shehzad, H.A. Mohammed, 3D numerical study of conical and fusiform turbulators for heat transfer improvement in a double-pipe heat exchanger, Int. J. Heat Mass Transf. 170 (2021) 120995. [25] M. Khoshvaght-Aliabadi, S. Zangouei, F. Hormozi, Performance of a plate-fin heat exchanger with vortex-generator channels: 3D-CFD simulation and experimental validation, Int. J. Therm. Sci. 88 (2015) 180-192. [26] R. Sarath, J.S. Jayakumar, Simulation of convective heat transfer in 3D forward facing step using various turbulence models, J. Eng. Technol. Sci. 52 (5) (2020) 621-638. [27] A. Farhadi, A. Mayrhofer, M. Tritthart, M. Glas, H. Habersack, Accuracy and comparison of standard k-ε with two variants of k-ω turbulence models in fluvial applications, Eng. Appl. Comput. Fluid Mech. 12 (1) (2018) 216-235. [28] M.P. Bulat, P.V. Bulat, Comparison of turbulence models in the calculation of supersonic separated flows, World Appl. Sci. J. 27 (10) (2013) 1263-1266. [29] D. Seo, J.S. Bae, E. Oh, S. Kim, S. Lim, Selective wet etching of Si3N4/SiO2 in phosphoric acid with the addition of fluoride and silicic compounds, Microelectron. Eng. 118 (2014) 66-71. [30] K.B. Sundaram, R.E. Sah, H. Baumann, K. Balachandran, R.M. Todi, Wet etching studies of silicon nitride thin films deposited by electron cyclotron resonance (ECR) plasma enhanced chemical vapor deposition, Microelectron. Eng. 70 (1) (2003) 109-114. [31] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, CRC Press, Boca Raton, 1980. [32] H. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education, New York, 2007. [33] J.W. Zhang, B. Fan, Z.W. Liu, Y. Han, Numerical simulation of flow field and thermal field with variable struction in reactive ion etching cavity, Laster Technol. 44 (1) (2020) 136-142, in Chinese. [34] J.M. Cook, K.G. Donohue, Etching issues at 0.35 micron and below, Solid State Technol. 34 (4) (1991) 119-124. [35] J.W. Yoon, S.M. Ma, G.P. Kim, Y. Kang, J. Hahn, O.J. Kwon, K. Kim, S.H. Song, Nanophotonic identification of defects buried in three-dimensional NAND flash memory devices, Nat. Electron. 1 (2018) 60-67. [36] C. Son, S. Lim, Control of Si3N4 etching kinetics and selectivity to SiO2 by the additives in superheated water, ECS J. Solid State Sci. Technol. 8 (4) (2019) N85-N91. [37] T. Park, C. Son, T. Kim, S. Lim, Understanding of etching mechanism of Si3N4 film in H3PO4 solution for the fabrication of 3D NAND devices, ECS Trans. 108 (4) (2022) 155-160. [38] J.R. Van Wazer, Principles of phosphorus chemistry. I. Some generalities concerning multiple Bonding1, J. Am. Chem. Soc. 78 (22) (1956) 5709-5715. [39] T. Kim, T. Park, C. Son, S. Lim, Improvement of SiO2 surface morphology during the selective Si3N4 etching in the multi-layered 3D NAND Si3N4/SiO2 stack structures by the generation of CO2 gas through the control of redox reaction, Surf. Interfaces. 35 (2022) 102484. [40] W. van Gelder, V.E. Hauser, The etching of silicon nitride in phosphoric acid with silicon dioxide as a mask, J. Electrochem. Soc. 114 (8) (1967) 869. [41] T. Kim, C. Son, T. Park, S. Lim, Oxide regrowth mechanism during silicon nitride etching in vertical 3D NAND structures, Microelectron. Eng. 221 (2020) 111191. [42] J. Zhou, W.P. Yan, L.G. Shi, F.Z. Kong, Study on numerical simulation of flow field uniformity in inlet section of SCR reactor, Thermal Power Generation. 38 (4) (2009) 22-25, in Chinese. [43] T. Li, S.P. Jin, S.Y. Huang, W. Liu, Evaluation indices of flow velocity distribution uniformity: Comparison and application, Thermal Power Generation. 42 (11) (2013) 60-63, 92, in Chinese. |