[1] I.W. Kay, W.T. Peschke, R.N. Guile, Hydrocarbon-fueled scramjet combustor investigation, J. Propul. Power 8 (2) (1992) 507-512. [2] H. Lander, A.C. Nixon, Endothermic fuels for hypersonic vehicles, J. Aircraft 8 (4) (1971) 200-207. [3] T. Edwards, Liquid fuels and propellants for aerospace propulsion: 1903-2003, J. Propul. Power 19 (6) (2003) 1089-1107. [4] W. Ning, P. Yu, Z. Jin, Research status of active cooling of endothermic hydrocarbon fueled scramjet engine, Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 227 (11) (2013) 1780-1794. [5] T.Y. Cao, W. Lee, R.J. Huang, R.J. Gorte, J.M. Vohs, Liquid-Organic hydrogen carriers as endothermic fuels, Fuel 313 (2022) 123063. [6] Y.H. Yeh, C.E. Tsai, C. Wang, R.J. Gorte, Heat-flow measurements for n-hexane reactions on H-ZSM-5 and H(Zn)-ZSM-5: implications for endothermic reforming in hypersonic aircraft, Ind. Eng. Chem. Res. 56 (21) (2017) 6198-6203. [7] J. Luo, B.V. Bhaskar, Y.H. Yeh, R.J. Gorte, N-Hexane cracking at high pressures on H-ZSM-5, H-BEA, H-MOR, and USY for endothermic reforming, Appl. Catal. Gen. 478 (2014) 228-233. [8] K. Murata, N. Kurimoto, Y. Yamamoto, A. Oda, J. Ohyama, A. Satsuma, Structure-property relationships of Pt-Sn nanoparticles supported on Al2O3 for the dehydrogenation of methylcyclohexane, ACS Appl. Nano Mater. 4 (5) (2021) 4532-4541. [9] W. Peters, A. Seidel, S. Herzog, A. Bosmann, W. Schwieger, P. Wasserscheid, Macrokinetic effects in perhydro-N-ethylcarbazole dehydrogenation and H2 productivity optimization by using egg-shell catalysts, Energy Environ. Sci. 8 (10) (2015) 3013-3021. [10] C. Lucarelli, G. Pavarelli, C. Molinari, S. Albonetti, W. Mista, D. Di Domenico, A. Vaccari, Catalyst deactivation in on-board H2 production by fuel dehydrogenation, Int. J. Hydrogen Energy 39 (3) (2014) 1336-1349. [11] S.S. Li, C.H. Guo, H. Zhang, Z.Z. Wang, Y. Jiao, J.L. Wang, Q. Zhu, X.Y. Li, Y.Q. Chen, High hydrogen selectivity and anti-carbon ability by cracking of RP-3 jet fuel over Pt/ZrO2-TiO2-Al2O3 catalyst modified by MxO y (M = Ba, Sr and Ce) promoters, Int. J. Hydrogen Energy 42 (16) (2017) 11252-11261. [12] D.A. Sun, C.Y. Li, Y.M. Du, L.G. Kou, J.W. Zhang, Y. Li, Z.X. Wang, J.W. Li, H. Feng, J. Lu, Effects of endothermic hydrocarbon fuel composition on the pyrolysis and anti-coking performance under supercritical conditions, Fuel 239 (2019) 659-666. [13] C.Y. Wang, J.M. Vohs, R.J. Gorte, Dehydrogenation of cycloalkanes over Pt/SBA-15 for endothermic cooling, Fuel 357 (2024) 129780. [14] L.N. Chen, P. Verma, K.P. Hou, Z.Y. Qi, S.C. Zhang, Y.S. Liu, J.H. Guo, V. Stavila, M.D. Allendorf, L.S. Zheng, M. Salmeron, D. Prendergast, G.A. Somorjai, J. Su, Reversible dehydrogenation and rehydrogenation of cyclohexane and methylcyclohexane by single-site platinum catalyst, Nat. Commun. 13 (1) (2022) 1092. [15] S.J. Tauster, S.C. Fung, R.L. Garten, Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide, J. Am. Chem. Soc. 100 (1) (1978) 170-175. [16] M. Xu, M. Peng, H.L. Tang, W. Zhou, B.T. Qiao, D. Ma, Renaissance of strong metal-support interactions, J. Am. Chem. Soc. 146 (4) (2024) 2290-2307. [17] F. Jiang, L. Zeng, S.R. Li, G. Liu, S.P. Wang, J.L. Gong, Propane dehydrogenation over Pt/TiO2-Al2O3 catalysts, ACS Catal. 5 (1) (2015) 438-447. [18] X.W. Chen, X.T. Qin, Y.Y. Jiao, M. Peng, J.Y. Diao, P.J. Ren, C.Y. Li, D.Q. Xiao, X.D. Wen, Z. Jiang, N. Wang, X.B. Cai, H.Y. Liu, D. Ma, Structure-dependence and metal-dependence on atomically dispersed Ir catalysts for efficient n-butane dehydrogenation, Nat. Commun. 14 (1) (2023) 2588. [19] Q.Q. Mao, X. Mu, W.X. Wang, K. Deng, H.J. Yu, Z.Q. Wang, Y. Xu, L. Wang, H.J. Wang, Atomically dispersed Cu coordinated Rh metallene arrays for simultaneously electrochemical aniline synthesis and biomass upgrading, Nat. Commun. 14 (2023) 5679. [20] Q.J. Pei, T. He, Y. Yu, Z.J. Jing, J.P. Guo, L. Liu, Z.T. Xiong, P. Chen, Liberating active metals from reducible oxide encapsulation for superior hydrogenation catalysis, ACS Appl. Mater. Interfaces 12 (6) (2020) 7071-7080. [21] Q.J. Pei, G.H. Qiu, Y. Yu, J.T. Wang, K.C. Tan, J.P. Guo, L. Liu, H.J. Cao, T. He, P. Chen, Fabrication of more oxygen vacancies and depression of encapsulation for superior catalysis in the water-gas shift reaction, J. Phys. Chem. Lett. 12 (43) (2021) 10646-10653. [22] X. Chen, X.B. Wang, S.H. Han, D. Wang, C. Li, W.X. Guan, W.Y. Li, C.H. Liang, Overcoming limitations in the strong interaction between Pt and irreducible SiO2 enables efficient and selective hydrogenation of anthracene, ACS Appl. Mater. Interfaces 14 (1) (2022) 590-602. [23] I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi, Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal, J. Mol. Catal. Chem. 161 (1-2) (2000) 205-212. [24] Q.J. Pei, T. He, Y. Yu, Z.J. Jing, J.T. Wang, K.C. Tan, J.P. Guo, L. Liu, H.J. Cao, P. Chen, Fabrication of oxygen vacancies through assembling an amorphous titanate overlayer on titanium oxide for a catalytic water-gas shift reaction, J. Mater. Chem. A 9 (5) (2021) 2784-2791. [25] N. Zhang, X.Y. Li, H.C. Ye, S.M. Chen, H.X. Ju, D.B. Liu, Y. Lin, W. Ye, C.M. Wang, Q. Xu, J.F. Zhu, L. Song, J. Jiang, Y.J. Xiong, Oxide defect engineering enables to couple solar energy into oxygen activation, J. Am. Chem. Soc. 138 (28) (2016) 8928-8935. [26] J.A. Horsley, A molecular orbital study of strong metal-support interaction between platinum and titanium dioxide, J. Am. Chem. Soc. 101 (11) (1979) 2870-2874. [27] K. Yu, L.L. Lou, S.X. Liu, W.Z. Zhou, Asymmetric oxygen vacancies: the intrinsic redox active sites in metal oxide catalysts, Adv. Sci. 7 (2) (2019) 1901970. [28] M.J. Kim, Y. Kim, J.R. Youn, I.H. Choi, K.R. Hwang, S.G. Kim, Y.K. Park, S.H. Moon, K.B. Lee, S.G. Jeon, Effects of sulfuric acid treatment on the performance of Ga-Al2O3 for the hydrolytic decomposition of 1, 1, 1, 2-tetrafluoroethane (HFC-134a), Catalysts 10 (7) (2020) 766. [29] T. Tseng-Chang, K. Hsiang-Yun, Y. Shih-Tsung, C.T. Chen, Effects of acid strength of fluid cracking catalysts on resid cracking operation, Appl. Catal. 50 (1) (1989) 1-13. [30] H.S. Cerqueira, G. Caeiro, L. Costa, F. Ramoa Ribeiro, Deactivation of FCC catalysts, J. Mol. Catal. Chem. 292 (1-2) (2008) 1-13. [31] T. Sato, K. Okaya, K. Kunimatsu, H. Yano, M. Watanabe, H. Uchida, Effect of particle size and composition on CO-tolerance at Pt-Ru/C catalysts analyzed by in situ attenuated total reflection FTIR spectroscopy, ACS Catal. 2 (3) (2012) 450-455. [32] G.J. Arteaga, J.A. Anderson, C.H. Rochester, FTIR study of CO adsorption on coked Pt-Sn/Al2O3 catalysts, Catal. Lett. 58 (4) (1999) 189-194. [33] K.I. Hadjiivanov, G.N. Vayssilov, Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Advances in Catalysis. Amsterdam: Elsevier, (2002) 307-511. [34] Q.Q. Wu, M.Z. Jing, Y.C. Wei, Z. Zhao, X.D. Zhang, J. Xiong, J. Liu, W.Y. Song, J.M. Li, High-efficient catalysts of core-shell structured Pt@transition metal oxides (TMOs) supported on 3DOM-Al2O3 for soot oxidation: the effect of strong Pt-TMO interaction, Appl. Catal. B Environ. 244 (2019) 628-640. [35] A.S. Ivanova, E.M. Slavinskaya, R.V. Gulyaev, V.I. Zaikovskii, ○.△. Stonkus, I.G. Danilova, L.M. Plyasova, I.A. Polukhina, A.I. Boronin, Metal-support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation, Appl. Catal. B Environ. 97 (1-2) (2010) 57-71. [36] Y.B. Li, X.Y. Chen, C.Y. Wang, C.B. Zhang, H. He, Sodium enhances Ir/TiO2 activity for catalytic oxidation of formaldehyde at ambient temperature, ACS Catal. 8 (12) (2018) 11377-11385. [37] R. Ran, J. Fan, D. Weng, Microstructure and oxygen storage capacity of Sr-modified Pt/CeO2-ZrO2 catalysts, Prog. Nat. Sci. Mater. Int. 22 (1) (2012) 7-14. [38] N.Z. Jiang, K.S.R. Rao, M.J. Jin, S.E. Park, Effect of hydrogen spillover in decalin dehydrogenation over supported Pt catalysts, Appl. Catal. Gen. 425 (2012) 62-67. [39] W. Karim, C. Spreafico, A. Kleibert, J. Gobrecht, J. VandeVondele, Y. Ekinci, J.A. van Bokhoven, Catalyst support effects on hydrogen spillover, Nature 541 (7635) (2017) 68-71. [40] R.A. Dalla Betta, M. Boudart, Hydroxyl exchange on H-CaY and Pt/H-CaY zeolites with deuterium, J. Chem. Soc., Faraday Trans. 172 (1976) 1723. [41] H. Huang, L.J. Spadaccini, D.R. Sobel, Fuel-cooled thermal management for advanced aeroengines, J. Eng. Gas Turbines Power 126 (2) (2004) 284-293. [42] Z.Z. Wang, H. Zhang, S.S. Li, J.L. Wang, Q. Zhu, X.Y. Li, The performance of Rh/SiO2-Al2O3 catalysts in methycyclohexane cracking reaction, J. Anal. Appl. Pyrolysis 124 (2017) 475-485. [43] T. Chen, J. Zhang, L.L. Wang, Y. Jiao, Q.Y. Zhang, J.L. Wang, Y.Q. Chen, X.Y. Li, A study of methylcyclohexane cracking in a micro-channel reactor coated with M/SiO2 (MFe, Co, Ni) catalysts under supercritical conditions, J. Anal. Appl. Pyrolysis 141 (2019) 104642. [44] S.S. Li, Z.Z. Wang, H. Zhang, Z.Z. Liu, J.L. Wang, Q. Zhu, X.Y. Li, Y.Q. Chen, The effects of MxOy (M=K, Ba, and Sr) promoters on inhibiting carbon deposit during catalytic cracking reactions, J. Anal. Appl. Pyrolysis 123 (2017) 269-277. [45] K.A. Cumming, B.W. Wojciechowski, Hydrogen transfer, coke formation, and catalyst decay and their role in the chain mechanism of catalytic cracking, Catal. Rev. 38 (1) (1996) 101-157. [46] G.W. Li, G.R. Blake, T.T.M. Palstra, Vacancies in functional materials for clean energy storage and harvesting: the perfect imperfection, Chem. Soc. Rev. 46 (6) (2017) 1693-1706. [47] Y.X. Hu, Y.Y. Pan, Z.L. Wang, T.E. Lin, Y.Y. Gao, B. Luo, H. Hu, F.T. Fan, G. Liu, L.Z. Wang, Lattice distortion induced internal electric field in TiO2 photoelectrode for efficient charge separation and transfer, Nat. Commun. 11 (1) (2020) 2129. [48] C.L. Yu, H.Y. Xu, Q.J. Ge, W.Z. Li, Properties of the metallic phase of zinc-doped platinum catalysts for propane dehydrogenation, J. Mol. Catal. Chem. 266 (1-2) (2007) 80-87. [49] P. Panagiotopoulou, D.I. Kondarides, Effects of alkali additives on the physicochemical characteristics and chemisorptive properties of Pt/TiO2 catalysts, J. Catal. 260 (1) (2008) 141-149. [50] S.P. Patil, A.B. Bindwal, Y.B. Pakade, R.B. Biniwale, On H2 supply through liquid organic hydrides-Effect of functional groups, Int. J. Hydrogen Energy 42 (25) (2017) 16214-16224. [51] R.B. Biniwale, S. Rayalu, S. Devotta, M. Ichikawa, Chemical hydrides: a solution to high capacity hydrogen storage and supply, Int. J. Hydrogen Energy 33 (1) (2008) 360-365. [52] D.K. Cromwell, P.T. Vasudevan, B. Pawelec, J.L.G. Fierro, Enhanced methylcyclohexane dehydrogenation to toluene over Ir/USY catalyst, Catal. Today 259 (2016) 119-129. |