[1] J.H. Tan, J.H. Peng, Z. Li, D.D. Liu, W.B. Li, Ag@AgBr/Ag3PO4 nanocomposites as photocatalyst for degradation of rhodamine B, Int. J. Electrochem. Sci. 16 (7) (2021) 210744. [2] C.J. Liang, J. Ma, Y.X. Cao, T.S. Zhang, Y. Chanyu, Y.F. Wu, H.M. Li, H. Xu, Y.J. Hua, C.T. Wang, Adsorption of BiOBr microspheres to rhodamine B and its influence on photocatalytic reaction, Chemosphere 304 (2022) 135320. [3] D.D. Liu, P.Y. Zhu, L. Yin, X.Y. Zhang, K.J. Zhu, J.H. Tan, R.Y. Jin, Facile fabrication of Bi2GeO5/Ag@Ag3PO4 for efficient photocatalytic RhB degradation, J. Solid State Chem. 301 (2021) 122309. [4] Y. Li, X.N. Zheng, J. Yang, Z.H. Zhao, S.H. Cui, Enhanced photocatalytic degradation of 2, 4, 6-trichlorophenol and RhB with RhB-sensitized BiOClBr catalyst based on response surface methodology, J. Taiwan Inst. Chem. Eng. 119 (2021) 213-223. [5] T.T. Cheng, H.J. Gao, X.F. Sun, T. Xian, S.F. Wang, Z. Yi, G.R. Liu, X.X. Wang, H. Yang, An excellent Z-scheme Ag2MoO4/Bi4Ti3O12 heterojunction photocatalyst: Construction strategy and application in environmental purification, Adv. Powder Technol. 32 (3) (2021) 951-962. [6] Z.H. Jabbar, B.H. Graimed, Recent developments in industrial organic degradation via semiconductor heterojunctions and the parameters affecting the photocatalytic process: a review study, J. Water Process. Eng. 47 (2022) 102671. [7] Y. Zhang, A.R. Sun, M.Y. Xiong, D.K. Macharia, J.S. Liu, Z.G. Chen, M. Li, L.S. Zhang, TiO2/BiOI p-n junction-decorated carbon fibers as weavable photocatalyst with UV-vis photoresponsive for efficiently degrading various pollutants, Chem. Eng. J. 415 (2021) 129019. [8] Y.J. Lu, Y. Gao, F.X. Ren, Y.Y. Xue, K.Z. Feng, Y.P. Zhao, X. Feng, L. Chen, NGO/ZnO2/ZnO heterojunctions with self-accelerating photocatalysis for efficient degradation of organic dyes, J. Water Process. Eng. 57 (2024) 104511. [9] X.T. Yin, D. Dastan, F.Y. Wu, J. Li, Facile synthesis of SnO2/LaFeO3-XNX composite: photocatalytic activity and gas sensing performance, Nanomaterials (Basel) 9 (8) (2019) 1163. [10] W.L. Tu, G. Wang, Y. Zhang, H.Y. Zhu, R.R. Du, H.Y. Zhao, S. Tang, Z.J. Guo, J. Yang, F. Yang, C.Z. Zhu, Coupling N-doping and confined Co3O4 on carbon nanotubes by polydopamine coating strategy for pleiotropic water purification, Rare Met. 43 (7) (2024) 3146-3160. [11] H.Y. Zhao, S. Wang, H.Y. Zhu, X.X. Zhang, D.H. Shang, X.W. Zhou, J. Wang, C.Z. Zhu, F. Du, Y.Y. Song, F. Yang, Modulating nanograin size and oxygen vacancy of porous ZnO nanosheets by highly concentrated Fe-doping effect for durable visible photocatalytic disinfection, Rare Met. (2024), https://doi.org/10.1007/s12598-024-02807-5. [12] X.K. Sun, J. Li, Y.J. Wang, Y. Zhang, H.L. Yuan, The g-C3N4/Bi2Sn2O7@PAN nanofibes: Enhanced photocatalytic activity in H2 evolution by the formation of heterojunction and in situ growth, Appl. Surf. Sci. 608 (2023) 155228. [13] X.Q. Hao, J. Zhou, Z.W. Cui, Y.C. Wang, Y. Wang, Z.G. Zou, Zn-vacancy mediated electron-hole separation in ZnS/g-C3N4 heterojunction for efficient visible-light photocatalytic hydrogen production, Appl. Catal. B Environ. 229 (2018) 41-51. [14] J.Y. Li, Z. Xia, D. Ma, G.C. Liu, N.N. Song, D. Xiang, Y.J. Xin, G.D. Zhang, Q.H. Chen, Improving photocatalytic activity by construction of immobilized Z-scheme CdS/Au/TiO2 nanobelt photocatalyst for eliminating norfloxacin from water, J. Colloid Interface Sci. 586 (2021) 243-256. [15] W.H. Liu, C.J. Wei, G.D. Wang, X. Cao, Y.X. Tan, S.Q. Hu, In situ synthesis of plasmonic Ag@AgI/TiO2 nanocomposites with enhanced visible photocatalytic performance, Ceram. Int. 45 (14) (2019) 17884-17889. [16] C.J. Wu, M.C. Yin, R. Zhang, Z.H. Li, Z.G. Zou, Z.J. Li, Further studies of photodegradation and photocatalytic hydrogen production over Nafion-coated Pt/P25 sensitized by rhodamine B, Int. J. Hydrog. Energy 45 (43) (2020) 22700-22710. [17] F. Mokhtari, N. Tahmasebi, Hydrothermal synthesis of W-doped BiOCl nanoplates for photocatalytic degradation of rhodamine B under visible light, J. Phys. Chem. Solids 149 (2021) 109804. [18] Y.X. Zhong, Y.H. Liu, S. Wu, Y. Zhu, H.B. Chen, X. Yu, Y.M. Zhang, Facile fabrication of BiOI/BiOCl immobilized films with improved visible light photocatalytic performance, Front. Chem. 6 (2018) 58. [19] M. Padervand, B. Rhimi, C.Y. Wang, One-pot synthesis of novel ternary Fe3N/Fe2O3/C3N4 photocatalyst for efficient removal of rhodamine B and CO2 reduction, J. Alloys Compd. 852 (2021) 156955. [20] J.W. Huang, L. Li, J.Q. Chen, F.Y. Ma, Y. Yu, Broad spectrum response flower spherical-like composites CQDs@CdIn2S4/CdS modified by CQDs with up-conversion property for photocatalytic degradation and water splitting, Int. J. Hydrog. Energy 45 (3) (2020) 1822-1836. [21] Z.M. He, H.P. Yang, J.B. Su, Y.M. Xia, X.F. Fu, L.N. Wang, L. Kang, Construction of multifunctional dual Z-scheme composites with enhanced photocatalytic activities for degradation of ciprofloxacin, Fuel 294 (2021) 120399. [22] P. Ju, L. Hao, Y. Zhang, J.C. Sun, K.P. Dou, Z.X. Lu, D.K. Liao, X.F. Zhai, C.J. Sun, In-situ topotactic construction of novel rod-like Bi2S3/Bi5O7I p-n heterojunctions with highly enhanced photocatalytic activities, J. Mater. Sci. Technol. 135 (2023) 126-141. [23] X.L. Chen, B.X. Zhao, J.X. Ma, L.X. Liu, H.D. Luo, W.J. Wang, The BiOBr/Bi/Bi2WO6 photocatalyst with SPR effect and Z-scheme heterojunction synergistically degraded RhB under visible light, Opt. Mater. 122 (2021) 111641. [24] B. Zhang, X.Y. Hu, E.Z. Liu, J. Fan, Novel S-scheme 2D/2D BiOBr/g-C3N4 heterojunctions with enhanced photocatalytic activity, Chin. J. Catal. 42 (9) (2021) 1519-1529. [25] L.Y. Huang, J.W. Liu, P.P. Li, Y.P. Li, C.B. Wang, S.X. Shu, Y.H. Song, CQDs modulating Z-scheme g-C3N4/BiOBr heterostructure for photocatalytic removing RhB, BPA and TC and E. coli by LED light, J. Alloys Compd. 895 (2022) 162637. [26] L.J. Jian, S.Y. Li, H. Sun, Q. He, J.T. Chen, Y. Zhao, Y. Li, Structure-induced highly selective adsorption and photocatalytic pollutant degradation performance of BiOBr, Colloids Surf. A Physicochem. Eng. Aspects 652 (2022) 129919. [27] T. zhang, M. Maihemllti, K. Okitsu, D. Talifur, Y. Tursun, A. Abulizi, In situ self-assembled S-scheme BiOBr/pCN hybrid with enhanced photocatalytic activity for organic pollutant degradation and CO2 reduction, Appl. Surf. Sci. 556 (2021) 149828. [28] J.H. Huang, W.Z. Chen, X. Yu, X.H. Fu, Y. Zhu, Y.M. Zhang, Fabrication of a ternary BiOCl/CQDs/rGO photocatalyst: The roles of CQDs and rGO in adsorption-photocatalytic removal of ciprofloxacin, Colloids Surf. A Physicochem. Eng. Aspects 597 (2020) 124758. [29] M. Nasrollahzadeh, M. Sajjadi, S. Iravani, R.S. Varma, Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives, Chemosphere 263 (2021) 128005. [30] S. Singla, S. Sharma, S. Basu, N.P. Shetti, T.M. Aminabhavi, Photocatalytic water splitting hydrogen production via environmental benign carbon based nanomaterials, Int. J. Hydrog. Energy 46 (68) (2021) 33696-33717. [31] X. Zhong, E. Yuan, F. Yang, Y. Liu, H. Lu, J. Yang, F. Gao, Y. Zhou, J. Pan, J. Zhu, C. Yu, C. Zhu, A. Yuan, E.H. Ang, Optimizing oxygen vacancies through grain boundary engineering to enhance electrocatalytic nitrogen reduction, Proc. Natl. Acad. Sci. USA 120 (40) (2023) e2306673120. [32] Y.L. Jin, W.W. Tang, J.Y. Wang, F. Ren, Z.Y. Chen, Z.F. Sun, P.G. Ren, Construction of biomass derived carbon quantum dots modified TiO2 photocatalysts with superior photocatalytic activity for methylene blue degradation, J. Alloys Compd. 932 (2023) 167627. [33] S. Sekar, C. Bathula, I. Rabani, J.W. Lee, S.H. Lee, Y.S. Seo, S. Lee, Enhanced photocatalytic crystal-violet degradation performances of sonochemically-synthesized AC-CeO2 nanocomposites, Ultrason. Sonochem. 90 (2022) 106177. [34] F.Y. Kang, C. Shi, W.C. Li, M.L. Eqi, Z.S. Liu, X.G. Zheng, Z.H. Huang, Honeycomb like CdS/sulphur-modified biochar composites with enhanced adsorption-photocatalytic capacity for effective removal of rhodamine B, J. Environ. Chem. Eng. 10 (1) (2022) 106942. [35] Q. Tang, J.Y. Liu, H.M. Han, S.H. Jia, Y.R. Guo, G.P. Liu, B. Wang, H.M. Li, C.T. Wang, H. Xu, Y.J. Hua, Synergistic photocatalysis of oxygen-enriched vacancy BiOBr based on rice husk biochar: Efficient seawater purification achieved by carrier directional migration, Process. Saf. Environ. Prot. 189 (2024) 505-516. [36] B.A. Bose, A. Nzihou, D. Thangadurai, A. Saha, N. Kalarikkal, BiOBr-rice husk carbon composite for antibiotic degradation, Mater. Sci. Semicond. Process. 177 (2024) 108366. [37] S. Shi, Y.X. Liu, Nitrogen-doped activated carbons derived from microalgae pyrolysis by-products by microwave/KOH activation for CO2 adsorption, Fuel 306 (2021) 121762. [38] Y. Yu, F.J. Chen, X.K. Jin, J.Y. Min, H.M. Duan, J. Li, Z.F. Wu, B.B. Cao, Oxygen vacancies-rich S-cheme BiOBr/CdS heterojunction with synergetic effect for highly efficient light emitting diode-driven pollutants degradation, Nanomaterials (Basel) 13 (5) (2023) 830. [39] J.C. Sin, S.M. Lam, H. Zeng, H. Lin, H. Li, L. Huang, K.O. Tham, A.R. Mohamed, J.W. Lim, Enhanced synchronous photocatalytic 4-chlorophenol degradation and Cr(VI) reduction by novel magnetic separable visible-light-driven Z-scheme CoFe2O4/P-doped BiOBr heterojunction nanocomposites, Environ. Res. 212 (Pt C) (2022) 113394. [40] Y.Y. Wu, H.D. Ji, Q.M. Liu, Z.Y. Sun, P.S. Li, P.R. Ding, M. Guo, X.H. Yi, W.L. Xu, C.C. Wang, S. Gao, Q. Wang, W. Liu, S.W. Chen, Visible light photocatalytic degradation of sulfanilamide enhanced by Mo doping of BiOBr nanoflowers, J. Hazard. Mater. 424 (Pt C) (2022) 127563. [41] J. Di, J.X. Xia, M.X. Ji, B. Wang, X.W. Li, Q. Zhang, Z.G. Chen, H.M. Li, Nitrogen-doped carbon quantum dots/BiOBr ultrathin nanosheets: in situ strong coupling and improved molecular oxygen activation ability under visible light irradiation, ACS Sustainable Chem. Eng. 4 (1) (2016) 136-146. [42] C. Chuaicham, K. Sekar, V. Balakumar, J. Uchida, T. Katsurao, H. Sakabe, B. Ohtani, K. Sasaki, Efficient photocatalytic degradation of emerging ciprofloxacin under visible light irradiation using BiOBr/carbon quantum dot/saponite composite, Environ. Res. 212 (2022) 113635. [43] M. Najjar, M. Ali Nasseri, A. Allahresani, M. Darroudi, Green and efficient synthesis of carbon quantum dots from cordia myxa L. and their application in photocatalytic degradation of organic dyes, J. Mol. Struct. 1266 (2022) 133456. [44] C.J. Wang, H.X. Shi, M. Yang, Y.J. Yan, E.Z. Liu, Z. Ji, J. Fan, Facile synthesis of novel carbon quantum dots from biomass waste for highly sensitive detection of iron ions, Mater. Res. Bull. 124 (2020) 110730. [45] V. Hasija, A. Sudhaik, P. Raizada, A. Hosseini-Bandegharaei, P. Singh, Carbon quantum dots supported AgI/ZnO/phosphorus doped graphitic carbon nitride as Z-scheme photocatalyst for efficient photodegradation of 2, 4-dinitrophenol, J. Environ. Chem. Eng. 7 (4) (2019) 103272. [46] N. Murugan, M. Prakash, M. Jayakumar, A. Sundaramurthy, A.K. Sundramoorthy, Green synthesis of fluorescent carbon quantum dots from Eleusine coracana and their application as a fluorescence ‘turn-off’ sensor probe for selective detection of Cu2+, Appl. Surf. Sci. 476 (2019) 468-480. [47] X.W. Yan, B. Wang, M.X. Ji, Q. Jiang, G.P. Liu, P.J. Liu, S. Yin, H.M. Li, J.X. Xia, In-situ synthesis of CQDs/BiOBr material via mechanical ball milling with enhanced photocatalytic performances, Chin. J. Struct. Chem. 41 (8) (2022) 2208044-2208051. [48] M.X. Ji, Z.Y. Zhang, J.X. Xia, J. Di, Y.L. Liu, R. Chen, S. Yin, S. Zhang, H.M. Li, Enhanced photocatalytic performance of carbon quantum dots/BiOBr composite and mechanism investigation, Chin. Chem. Lett. 29 (6) (2018) 805-810. [49] P.J. Weng, Q. Cai, H.D. Wu, L.F. Zhang, K. Wu, J. Guo, Facile synthesis of flower-like CQDs/S-Bi4O5Br2 composites as a highly efficient visible-light response photocatalyst for ciprofloxacin degradation, J. Mater. Sci. 57 (3) (2022) 1977-1993. [50] B.X. Zhao, H. Xu, K.L. Zhang, B. Gao, Y.L. Wang, Q. Wang, K.X. Zhang, Y. Huang, J.C. Li, Visible-light-driven CQDs/TiO2 photocatalytic simultaneous removal of Cr(VI) and organics: Cooperative reaction, kinetics and mechanism, Chemosphere 307 (2022) 135897. [51] D.J. Mao, X.M. Lu, Z.F. Jiang, J.M. Xie, X.F. Lu, W. Wei, A.M. Showkot Hossain, Ionic liquid-assisted hydrothermal synthesis of square BiOBr nanoplates with highly efficient photocatalytic activity, Mater. Lett. 118 (2014) 154-157. [52] J.B. Gu, Q.W. Li, X.Y. Long, X.H. Zhou, N. Liu, Z.Q. Li, Fabrication of magnetic dual Z-scheme heterojunction materials for efficient photocatalytic performance: The study of ternary novel MIL-88A(Fe)/BiOBr/SrFe12O19 nanocomposite, Sep. Purif. Technol. 289 (2022) 120778. [53] T. Xian, H.Q. Li, X.F. Sun, Y.S. Huo, L.J. Di, C.Y. Sun, H. Yang, S-scheme In2O3 nanoparticle/BiOBr nanoplate heterojunctions for improved photocatalytic dye degradation and Cr(VI) reduction, ACS Appl. Nano Mater. 5 (10) (2022) 15260-15271. [54] S.J. Tong, J. Zhou, L. Ding, C. Zhou, Y. Liu, S.Q. Li, J. Meng, S.L. Zhu, S. Chatterjee, F. Liang, Preparation of carbon quantum dots/TiO2 composite and application for enhanced photodegradation of rhodamine B, Colloids Surf. A Physicochem. Eng. Aspects 648 (2022) 129342. [55] W.Z. Qin, Q. Yang, H. Ye, Y. Xie, Z. Shen, Y. Guo, Y.G. Deng, Y. Ling, J. Yu, G. Luo, N. Raza, W. Raza, J. Zhao, Novel 2D/2D BiOBr/Zn(OH)2 photocatalysts for efficient photoreduction CO2, Sep. Purif. Technol. 306 (2023) 122721. [56] B.H. Wang, Z.S. Cai, J.B. Zhong, J.Z. Li, Rich oxygen vacancies facilitated photocatalytic performance of BiOBr induced by carbon black, Solid State Sci. 132 (2022) 106985. [57] X.H. Ji, C. Li, J.H. Liu, T.L. Zhang, Y. Yang, R.J. Yu, X.G. Luo, Controlled synthesis and visible-light-driven photocatalytic activity of BiOBr particles for ultrafast degradation of pollutants, Molecules 28 (14) (2023) 5558. [58] S.B. Zhang, X. Zhang, J.J. Zhang, H.H. Zheng, G.Y. Li, K. Zeng, J.G. Shao, H.P. Yang, S.H. Zhang, H.P. Chen, Three-dimension in situ nitrogen doping porous cellulosic biomass-based carbon aerogel for electrocatalytic CO2 reduction, Fuel Process. Technol. 242 (2023) 107612. [59] C. Lai, F.H. Xu, M.M. Zhang, B.S. Li, S.Y. Liu, H. Yi, L. Li, L. Qin, X.G. Liu, Y.K. Fu, N. An, H.L. Yang, X.Q. Huo, X.F. Yang, H.C. Yan, Facile synthesis of CeO2/carbonate doped Bi2O2CO3 Z-scheme heterojunction for improved visible-light photocatalytic performance: Photodegradation of tetracycline and photocatalytic mechanism, J. Colloid Interface Sci. 588 (2021) 283-294. [60] G.Q. Zhao, X. Long, J. Zou, J. Hu, L.X. Wu, F.P. Jiao, Facile fabrication of sulfuretted NiFe-layered double hydroxides/oxalic acid induced g-C3N4 Z-scheme heterojunction for enhanced photocatalytic removal of tetracycline and Cr(Ⅵ) under visible light irradiation, Colloids Surf. A Physicochem. Eng. Aspects 652 (2022) 129870. [61] Z.Q. Long, G.M. Zhang, H.B. Du, J. Zhu, J.W. Li, Preparation and application of BiOBr-Bi2S3 heterojunctions for efficient photocatalytic removal of Cr(VI), J. Hazard. Mater. 407 (2021) 124394. [62] Z.S. Liu, B.T. Wu, J.N. Niu, P.Z. Feng, Y.B. Zhu, BiPO4/BiOBr p-n junction photocatalysts: One-pot synthesis and dramatic visible light photocatalytic activity, Mater. Res. Bull. 63 (2015) 187-193. [63] X.J. Wang, W. Zhao, H.X. Lin, C.H. Yao, Y.L. He, X. Ran, L.J. Guo, T.F. Li, Facet-dependent photocatalytic and photoelectric properties of CQDs/TiO2 composites under visible irradiation, J. Alloys Compd. 920 (2022) 165896. [64] J.Y. Li, Y. Wang, Y.Y. Yue, A transparent, high-strength, and recyclable core-shell structured wood hydrogel integrated with carbon dots for photodegradation of rhodamine B, ACS Appl. Nano Mater. 6 (4) (2023) 2894-2907. [65] J.J. Li, X.Y. Xiao, Y. Xiao, M.L. Lu, Construction of Z-scheme BiOCl/Bi24O31Br10 hierarchical heterostructures with enhanced photocatalytic activity, J. Alloys Compd. 921 (2022) 166050. [66] T. Chankhanittha, S. Nanan, Visible-light-driven photocatalytic degradation of ofloxacin (OFL) antibiotic and Rhodamine B (RhB) dye by solvothermally grown ZnO/Bi2MoO6 heterojunction, J. Colloid Interface Sci. 582 (2021) 412-427. [67] M. Ahmad, W. Rehman, M.M. Khan, M.T. Qureshi, A. Gul, S. Haq, R. Ullah, A. Rab, F. Menaa, Phytogenic fabrication of ZnO and gold decorated ZnO nanoparticles for photocatalytic degradation of Rhodamine B, J. Environ. Chem. Eng. 9 (1) (2021) 104725. [68] R. Saffari, Z. Shariatinia, M. Jourshabani, Synthesis and photocatalytic degradation activities of phosphorus containing ZnO microparticles under visible light irradiation for water treatment applications, Environ. Pollut. 259 (2020) 113902. [69] Z. Mirzaeifard, Z. Shariatinia, M. Jourshabani, S.M. Rezaei Darvishi, ZnO photocatalyst revisited: effective photocatalytic degradation of emerging contaminants using S-doped ZnO nanoparticles under visible light radiation, Ind. Eng. Chem. Res. 59 (36) (2020) 15894-15911. [70] C. Yang, H.H. Liu, J.B. Zhong, J.Z. Li, S.T. Huang, H.J. Fan, Carbon quantum dots modified BiOCl for highly efficient degradation of contaminants benefited from effective generation of ·O2-, Mater. Sci. Semicond. Process. 136 (2021) 106165. [71] X.Y. Qiu, S. Lin, J.M. Li, L. Guo, One-step coprecipitation synthesis of BiOClxBr1-x photocatalysts decorated with CQDs at room temperature with enhanced visible-light response, Inorg. Chem. 61 (28) (2022) 10999-11010. |