Engineering graphene oxide and hydrogel coatings on fabrics for smart Janus textiles with superior thermal regulation
Weidong Wu, Yukun Zeng, Chen Zhou, Xin Zhou, Shengyang Yang
中国化学工程学报. 2024, 74(10):
1-12.
doi:10.1016/j.cjche.2024.05.027
摘要
(
)
PDF (17065KB)
(
)
参考文献 |
相关文章 |
多维度评价
Fabric multifunctionality offers resource savings and enhanced human comfort. This study innovatively integrates cooling, heating, and antimicrobial properties within a Janus fabric, surpassing previous research focused solely on cooling or heating. Different effects are achieved by applying distinct coatings to each side of the fabric. One graphene oxide (GO) coating exhibits exceptional light-to-heat conversion, absorbing and transforming light energy into heat, thereby elevating fabric temperature by 15.4 ℃, 22.7 ℃, and 43.7 ℃ under 0.2, 0.5, and 1 sun irradiation, respectively. Conversely, a hydrogel coating on one side absorbs water, facilitating heat dissipation through evaporation upon light exposure, reducing fabric temperature by 5.9 ℃, 8.4 ℃, and 7.1 ℃ in 0.2, 0.5, and 1 sun irradiation, respectively. Moreover, both sides of Janus fabric exhibit potent antimicrobial properties, ensuring fabric hygiene. This work presents a feasible solution to address crucial challenges in fabric thermal regulation, providing a smart approach for intelligent adjustment of body comfort in both summer and winter. By integrating heating and cooling capabilities along with antimicrobial properties, this study promotes sustainable development in textile techniques.