中国化学工程学报 ›› 2024, Vol. 74 ›› Issue (10): 100-116.DOI: 10.1016/j.cjche.2024.06.011
Mirza Nusrat Sweety1,3, Md Abdus Salam1,2
收稿日期:
2024-03-26
修回日期:
2024-06-10
接受日期:
2024-06-12
出版日期:
2024-10-28
发布日期:
2024-07-15
通讯作者:
Md Abdus Salam,E-mail:salam.ctg@bcsir.gov.bd,salam.bcsir1@gmail.com
Mirza Nusrat Sweety1,3, Md Abdus Salam1,2
Received:
2024-03-26
Revised:
2024-06-10
Accepted:
2024-06-12
Online:
2024-10-28
Published:
2024-07-15
Contact:
Md Abdus Salam,E-mail:salam.ctg@bcsir.gov.bd,salam.bcsir1@gmail.com
摘要: Graphene oxide (GO) filler containing diversified Nafion-based proton exchange membrane (PEM) is studied to know the unique physical and chemical properties and performances of PEM. Nafion-SPEEK 1%-GO 0.75% (NSG-0.75%) composite shows the highest proton conductivity of 0.327 S·cm-1 at 90 °C and 100% RH (relative humidity) among all the PEM investigated. The descending order of significant proton conductivity is found as; Nafion-sPGO(1%) 0.306 S·cm-1 > Nafion/ZIF-8@GO 0.280 S·cm-1 > Nafion/PGO (2%) 0.277 S·cm-1 > Nafion/GO-sulfur (3%) 0.232 S·cm-1 > Nafion/GO-poly-SPM-co-PEGMEMA(1%) 0.229 S·cm-1 > Nafion/Ce-sPGO(1%) 0.215 S·cm-1. The proton conductivity, water uptake capacity and ion exchange capacity, hydration number, thermal and oxidative stability, mechanical integrity (tensile strength), maximum power, and current density are found to be increased while activation energy and fuel crossover show a decrement as GO or modified GO is incorporated in the Nafion matrix. Principal component analysis (PCA) predicted a significant correlation between the proton conductivity and the properties; the water uptake capacity, ion exchange capacity, hydration number, maximum power density, and maximum current density are 0.598%, 0.688%, 0.894%, 0.980%, and 0.852% accordingly. A multiple linear model equation of proton conductivity is defined with the parameters of water uptake capacity, ion exchange capacity, hydration number, maximum power density, and maximum current density whereas the regression coefficient is 0.9923.
Mirza Nusrat Sweety, Md Abdus Salam. Proton conductivity performance and its correlation with physio-chemical properties of proton exchange membrane (PEM)[J]. 中国化学工程学报, 2024, 74(10): 100-116.
Mirza Nusrat Sweety, Md Abdus Salam. Proton conductivity performance and its correlation with physio-chemical properties of proton exchange membrane (PEM)[J]. Chinese Journal of Chemical Engineering, 2024, 74(10): 100-116.
[1] Z. Wang, H.L. Tang, H.J. Zhang, M. Lei, R. Chen, P. Xiao, M. Pan, Synthesis of Nafion/CeO2 hybrid for chemically durable proton exchange membrane of fuel cell, J. Membr. Sci. 421 (2012) 201-210. [2] Z. Abdin, A. Zafaranloo, A. Rafiee, W. Merida, W. Lipinski, K.R. Khalilpour. Hydrogen as an energy vector. Renew. Sustain. Energy Rev. 120(109620) (2020) 1-32. [3] H. Nazir, N. Muthuswamy, C. Louis, S. Jose, J. Prakash, M.E.M. Buan, C. Flox, S. Chavan, X. Shi, P. Kauranen, T. Kallio, G. Maia, K. Tammeveski, N. Lymperopoulos, E. Carcadea, E. Veziroglu, A. Iranzo, A.M. Kannan, Is the H2 economy realizable in the foreseeable future? Part III: H2 usage technologies, applications, and challenges and opportunities, Int. J. Hydrogen Energy 45 (53) (2020) 28217-28239. [4] A. Alaswad, A. Omran, J.R. Sodre, T. Wilberforce, G. Pignatelli, M. Dassisti, A. Baroutaji, A.G. Olabi, Technical and commercial challenges of proton-exchange membrane (PEM) fuel cells, Energies 14 (1) (2020) 144. [5] C. Cui, S.B. Li, J.Y. Gong, K.Y. Wei, X.J. Hou, C.R. Jiang, Y.L. Yao, J.J. Ma, Review of molten carbonate-based direct carbon fuel cells, Mater. Renew. Sustain. Energy 10 (2) (2021) 12. [6] H.A. Elwan, M. Mamlouk, K. Scott, A review of proton exchange membranes based on protic ionic liquid/polymer blends for polymer electrolyte membrane fuel cells, J. Power Sources 484 (2021) 229197. [7] M. Robert, A. El Kaddouri, J.C. Perrin, K. Mozet, M. Daoudi, J. Dillet, J.Y. Morel, S. Andre, O. Lottin, Effects of conjoint mechanical and chemical stress on perfluorosulfonic-acid membranes for fuel cells, J. Power Sources 476 (2020) 228662. [8] M.S. Habib, P. Arefin, M.A. Salam, K. Ahmed, M.S. Uddin, T. Hossain, N. Papri, T. Islam, Proton exchange membrane fuel cell (PEMFC) durability factors, challenges, and future perspectives: A detailed review, Mat. Sci. Res. India 18 (2) (2021) 217-234. [9] M.M. Tellez-Cruz, J. Escorihuela, O. Solorza-Feria, V. Compan, Proton exchange membrane fuel cells (PEMFCs): Advances and challenges, Polymers 13 (18) (2021) 3064. [10] M.Z. Pan, C.J. Pan, C. Li, J. Zhao, A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability, Renew. Sustain. Energy Rev. 141 (2021) 110771. [11] Z. Zakaria, N. Shaari, S.K. Kamarudin, R. Bahru, M.T. Musa, A review of progressive advanced polymer nanohybrid membrane in fuel cell application, Int. J. Energy Res. 44 (11) (2020) 8255-8295. [12] R. Kannan, B.A. Kakade, V.K. Pillai, Polymer electrolyte fuel cells using nafion-based composite membranes with functionalized carbon nanotubes, Angew. Chem. Int. Ed Engl. 47 (14) (2008) 2653-2656. [13] Y. Prykhodko, K. Fatyeyeva, L. Hespel, S. Marais, Progress in hybrid composite Nafion®-based membranes for proton exchange fuel cell application, Chem. Eng. J. 409 (2021) 127329. [14] Y.N. Yusoff, N. Shaari, An overview on the development of nanofiber-based as polymer electrolyte membrane and electrocatalyst in fuel cell application, Int. J. Energy Res. 45 (13) (2021) 18441-18472. [15] L.G. Boutsika, A. Enotiadis, I. Nicotera, C. Simari, G. Charalambopoulou, E.P. Giannelis, T. Steriotis, Nafion® nanocomposite membranes with enhanced properties at high temperature and low humidity environments, Int. J. Hydrog. Energy 41 (47) (2016) 22406-22414. [16] T.L. Yu, H.L. Lin, K.S. Shen, L.N. Huang, Y.C. Chang, G.B. Jung, J.C. Huang, Nafion/PTFE composite membranes for fuel cell applications, J. Polym. Res. 11 (3) (2004) 217-224. [17] S. Neelakandan, D. Liu, L. Wang, M.S. Hu, L. Wang, Highly branched poly (arylene ether)/surface-functionalized fullerene-based composite membrane electrolyte for DMFC applications, Int. J. Energy Res. 43 (11) (2019) 6056. [18] F.C. Teixeira, A.I. de Sa, A.P.S. Teixeira, C.M. Rangel, Nafion phosphonic acid composite membranes for proton exchange membranes fuel cells, Appl. Surf. Sci. 487 (2019) 889-897. [19] S. Jang, M. Her, S. Kim, J.H. Jang, J.E. Chae, J. Choi, M. Choi, S.M. Kim, H.J. Kim, Y.H. Cho, Y.E. Sung, S.J. Yoo, Membrane/electrode interface design for effective water management in alkaline membrane fuel cells, ACS Appl. Mater. Interfaces 11 (38) (2019) 34805-34811. [20] Y. Hu, J. Li, S. Wang, Examination of the performance of degraded Nafion membrane with graphene oxide, Int. J. Hydrog. Energy 48 (81) (2023) 31734-31744. [21] W.W. Ng, H.S. Thiam, Y.L. Pang, Y.S. Lim, J. Wong, L.H. Saw, Self-sustainable, self-healable sulfonated graphene oxide incorporated nafion/poly(vinyl alcohol) proton exchange membrane for direct methanol fuel cell applications, J. Environ. Chem. Eng. 11 (6) (2023) 111151. [22] L.Y. Zhu, Y.C. Li, J. Liu, J. He, L.Y. Wang, J.D. Lei, Recent developments in high-performance Nafion membranes for hydrogen fuel cells applications, Petrol. Sci. 19 (3) (2022) 1371-1381. [23] P.C. Okonkwo, I. Ben Belgacem, W. Emori, P.C. Uzoma, Nafion degradation mechanisms in proton exchange membrane fuel cell (PEMFC) system: A review, Int. J. Hydrog. Energy 46 (55) (2021) 27956-27973. [24] K. Feng, B.B. Tang, P.Y. Wu, Ammonia-assisted dehydrofluorination between PVDF and Nafion for highly selective and low-cost proton exchange membranes: A possible way to further strengthen the commercialization of Nafion, J. Mater. Chem. A 3 (24) (2015) 12609-12615. [25] C.Y. Ru, Y.Y. Gu, Y.T. Duan, C.J. Zhao, H. Na, Enhancement in proton conductivity and methanol resistance of Nafion membrane induced by blending sulfonated poly(arylene ether ketones) for direct methanol fuel cells, J. Membr. Sci. 573 (2019) 439-447. [26] N. Shaari, S.K. Kamarudin, Recent advances in additive-enhanced polymer electrolyte membrane properties in fuel cell applications: An overview, Int. J. Energy Res. 43 (7) (2019) 2756-2794. [27] A.O. Krasnova, N.V. Glebova, A.G. Kastsova, M.K. Rabchinskii, A.A. Nechitailov, Thermal stabilization of nafion with nanocarbon materials, Polymers 15 (9) (2023) 2070. [28] J. Zhao, D. Song, J. Jia, N. Wang, K. Liu, T.T. Zuo, Q.T. Che, Constructing proton exchange membranes with high and stable proton conductivity at subzero temperature through vacuum assisted flocculation technique, Appl. Surf. Sci. 585 (2022) 152579. [29] S. Jang, Y.S. Kang, J. Choi, J.H. Yeon, C. Seol, L.V. Nam, M. Choi, S.M. Kim, S.J. Yoo, Prism patterned TiO2 layers/Nafion® composite membrane for elevated temperature/low relative humidity fuel cell operation, J. Ind. Eng. Chem. 90 (2020) 327-332. [30] R. Ohno, K. Shudo, T. Tano, K. Kakinuma, Development of polymer composite membranes with hydrophilic TiO2 nanoparticles and perfluorosulfonic acid-based electrolyte for polymer electrolyte fuel cells operating over a wide temperature range, ACS Appl. Energy Mater. 6 (19) (2023) 10098-10104. [31] D. Cozzi, C. de Bonis, A. D’Epifanio, B. Mecheri, A.C. Tavares, S. Licoccia, Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications, J. Power Sources 248 (2014) 1127-1132. [32] R. Sigwadi, T. Mokrani, M.S. Dhlamini, P. Nonjola, P.F. Msomi, Nafion®/sulfated zirconia oxide-nanocomposite membrane: The effects of ammonia sulfate on fuel permeability, J. Polym. Res. 26 (5) (2019) 108. [33] V. Di Noto, N. Boaretto, E. Negro, G.A. Giffin, S. Lavina, S. Polizzi, Inorganic-organic membranes based on Nafion, [(ZrO2)·(HfO2)0.25]and [(SiO2)·(HfO2)0.28]. Part I: Synthesis, thermal stability and performance in a single PEMFC, Int. J. Hydrog. Energy 37 (7) (2012) 6199-6214. [34] S.J. Liu, J.L. Yu, Y.P. Hao, F. Gao, M. Zhou, L.J. Zhao, Impact of SiO2 modification on the performance of nafion composite membrane, Int. J. Polym. Sci. 2024 (2024) 6309923. [35] H. Wang, X.J. Li, X.P. Zhuang, B.W. Cheng, W. Wang, W.M. Kang, L. Shi, H.J. Li, Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells, J. Power Sources 340 (2017) 201-209. [36] J. Li, G.X. Xu, X.Y. Luo, J. Xiong, Z. Liu, W.W. Cai, Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application, Appl. Energy 213 (2018) 408-414. [37] K. Oh, O. Kwon, B. Son, D.H. Lee, S. Shanmugam, Nafion-sulfonated silica composite membrane for proton exchange membrane fuel cells under operating low humidity condition, J. Membr. Sci. 583 (2019) 103-109. [38] Z.Y. Rui, R. Ding, K. Hua, X. Duan, X.K. Li, Y.K. Wu, X.B. Wang, C. Ouyang, J. Li, T. Li, J.G. Liu, Design of proton exchange membranes with high durability for fuel cells: From the perspective of machine learning, J. Membr. Sci. 683 (2023) 121831. [39] O. Danyliv, A. Martinelli, Nafion/protic ionic liquid blends: Nanoscale organization and transport properties, J. Phys. Chem. C 123 (23) (2019) 14813-14824. [40] M. Tawalbeh, A. Al-Othman, A. Ka’ki, S. Mohamad, M. Faheem Hassan, Starch-chitosan-ionic liquids-based composite membranes for high temperature PEM fuel cells applications, Int. J. Hydrog. Energy 67 (2024) 852-862. [41] Y. Li, Y. Shi, N. Mehio, M.S. Tan, Z.Y. Wang, X.H. Hu, G.Z. Chen, S. Dai, X.B. Jin, More sustainable electricity generation in hot and dry fuel cells with a novel hybrid membrane of Nafion/nano-silica/hydroxyl ionic liquid, Appl. Energy 175 (2016) 451-458. [42] J.W. Liu, L. Ding, H.Q. Zou, Z.P. Huan, H.T. Liu, J. Lu, S.N. Wang, Y.W. Li, A simple MOF constructed using Pb(ii) with strong polarizing force: A filler of Nafion membrane to increase proton conductivity, Dalton Trans. 52 (45) (2023) 16650-16660. [43] G.D. Zhao, L. Shi, M.L. Zhang, B.W. Cheng, G. Yang, X.P. Zhuang, Self-assembly of metal-organic framework onto nanofibrous mats to enhance proton conductivity for proton exchange membrane, Int. J. Hydrog. Energy 46 (73) (2021) 36415-36423. [44] Y. Li, H. Wu, Y.H. Yin, L. Cao, X.Y. He, B.B. Shi, J.Z. Li, M.Z. Xu, Z.Y. Jiang, Fabrication of Nafion/zwitterion-functionalized covalent organic framework composite membranes with improved proton conductivity, J. Membr. Sci. 568 (2018) 1-9. [45] I. Ressam, A. El Kadib, M. Lahcini, G.A. Luinstra, H. Perrot, O. Sel, Enhanced proton transport properties of Nafion via functionalized halloysite nanotubes, Int. J. Hydrog. Energy 43 (40) (2018) 18578-18591. [46] C. Beauger, G. Laine, A. Burr, A. Taguet, B. Otazaghine, Improvement of Nafion®-sepiolite composite membranes for PEMFC with sulfo-fluorinated sepiolite, J. Membr. Sci. 495 (2015) 392-403. [47] C. Beauger, G. Laine, A. Burr, A. Taguet, B. Otazaghine, A. Rigacci, Nafion®-sepiolite composite membranes for improved proton exchange membrane fuel cell performance, J. Membr. Sci. 430 (2013) 167-179. [48] S.J. Lue, Y.L. Pai, C.M. Shih, M.C. Wu, S.M. Lai, Novel bilayer well-aligned Nafion/graphene oxide composite membranes prepared using spin coating method for direct liquid fuel cells, J. Membr. Sci. 493 (2015) 212-223. [49] G. Rambabu, N. Nagaraju, S.D. Bhat, Functionalized fullerene embedded in Nafion matrix: A modified composite membrane electrolyte for direct methanol fuel cells, Chem. Eng. J. 306 (2016) 43-52. [50] C.S. Yin, B.Y. Xiong, Q.C. Liu, J.J. Li, L.B. Qian, Y.W. Zhou, C.Q. He, Lateral-aligned sulfonated carbon-nanotubes/Nafion composite membranes with high proton conductivity and improved mechanical properties, J. Membr. Sci. 591 (2019) 117356. [51] J.S. Gao, X.K. Dong, Q.B. Tian, Y. He, Carbon nanotubes reinforced proton exchange membranes in fuel cells: An overview, Int. J. Hydrog. Energy 48 (8) (2023) 3216-3231. [52] N.J. Steffy, V. Parthiban, A.K. Sahu, Uncovering Nafion-multiwalled carbon nanotube hybrid membrane for prospective polymer electrolyte membrane fuel cell under low humidity, J. Membr. Sci. 563 (2018) 65-74. [53] X.H. Yan, R.Z. Wu, J.B. Xu, Z.T. Luo, T.S. Zhao, A monolayer graphene-Nafion sandwich membrane for direct methanol fuel cells, J. Power Sources 311 (2016) 188-194. [54] Y.F. Lian, Y.X. Liu, T. Jiang, J. Shu, H.Q. Lian, M.H. Cao, Enhanced electromechanical performance of graphite oxide-nafion nanocomposite actuator, J. Phys. Chem. C 114 (21) (2010) 9659-9663. [55] M. Vinothkannan, A.R. Kim, G. Gnana kumar, J.M. Yoon, D.J. Yoo, Toward improved mechanical strength, oxidative stability and proton conductivity of an aligned quadratic hybrid (SPEEK/FPAPB/Fe3O4-FGO) membrane for application in high temperature and low humidity fuel cells, RSC Adv. 7 (62) (2017) 39034-39048. [56] M. Vinothkannan, A.R. Kim, K.S. Nahm, D.J. Yoo, Ternary hybrid (SPEEK/SPVdF-HFP/GO) based membrane electrolyte for the applications of fuel cells: Profile of improved mechanical strength, thermal stability and proton conductivity, RSC Adv. 6 (110) (2016) 108851-108863. [57] B.P. Tripathi, V.K. Shahi, Organic-inorganic nanocomposite polymer electrolyte membranes for fuel cell applications, Prog. Polym. Sci. 36 (7) (2011) 945-979. [58] M. Mariani, A. Basso Peressut, S. Latorrata, R. Balzarotti, M. Sansotera, G. Dotelli, The role of fluorinated polymers in the water management of proton exchange membrane fuel cells: A review, Energies 14 (24) (2021) 8387. [59] Y.Z. Ke, W. Yuan, F.K. Zhou, W.W. Guo, J.G. Li, Z.Y. Zhuang, X.Q. Su, B.W. Lu, Y.H. Zhao, Y. Tang, Y. Chen, J.L. Song, A critical review on surface-pattern engineering of nafion membrane for fuel cell applications, Renew. Sustain. Energy Rev. 145 (2021) 110860. [60] M.B. Karimi, K. Hooshyari, P. Salarizadeh, H. Beydaghi, V.M. Ortiz-Martinez, A. Ortiz, I. Ortiz Uribe, F. Mohammadi, A comprehensive review on the proton conductivity of proton exchange membranes (PEMs) under anhydrous conditions: Proton conductivity upper bound, Int. J. Hydrog. Energy 46 (69) (2021) 34413-34437. [61] M.B. Karimi, F. Mohammadi, K. Hooshyari, Recent approaches to improve Nafion performance for fuel cell applications: A review, Int. J. Hydrog. Energy 44 (54) (2019) 28919-28938. [62] Z.X. Bai, S.C. Liu, G.J. Cheng, G.Y. Wu, Y. Liu, High proton conductivity of MOFs-polymer composite membranes by phosphoric acid impregnation, Microporous Mesoporous Mater. 292 (2020) 109763. [63] X.B. Li, H.W. Ma, P. Wang, Z.C. Liu, J.W. Peng, W. Hu, Z.H. Jiang, B.J. Liu, M.D. Guiver, Highly conductive and mechanically stable imidazole-rich cross-linked networks for high-temperature proton exchange membrane fuel cells, Chem. Mater. 32 (3) (2020) 1182-1191. [64] L.L. Liu, Y.Y. Pu, Y. Lu, N. Li, Z.X. Hu, S.W. Chen, Superacid sulfated SnO2 doped with CeO2: A novel inorganic filler to simultaneously enhance conductivity and stabilities of proton exchange membrane, J. Membr. Sci. 621 (2021) 118972. [65] S.S. Aravind, S. Ramaprabhu, Pt nanoparticle-dispersed graphene-wrapped MWNT composites as oxygen reduction reaction electrocatalyst in proton exchange membrane fuel cell, ACS Appl. Mater. Interfaces 4 (8) (2012) 3805-3810. [66] P. Prapainainar, N. Pattanapisutkun, C. Prapainainar, P. Kongkachuichay, Incorporating graphene oxide to improve the performance of Nafion-mordenite composite membranes for a direct methanol fuel cell, Int. J. Hydrog. Energy 44 (1) (2019) 362-378. [67] L.P. Zhao, Y.F. Li, H.Q. Zhang, W.J. Wu, J.D. Liu, J.T. Wang, Constructing proton-conductive highways within an ionomer membrane by embedding sulfonated polymer brush modified graphene oxide, J. Power Sources 286 (2015) 445-457. [68] K.J. Peng, J.Y. Lai, Y.L. Liu, Nanohybrids of graphene oxide chemically-bonded with Nafion: Preparation and application for proton exchange membrane fuel cells, J. Membr. Sci. 514 (2016) 86-94. [69] L. Wang, J. Kang, J.D. Nam, J. Suhr, A.K. Prasad, S.G. Advani, Composite membrane based on graphene oxide sheets and nafion for polymer electrolyte membrane fuel cells, ECS Electrochem. Lett. 4 (1) (2015) F1-F4. [70] S.P. Zhang, D. Li, J.X. Kang, G.P. Ma, Y. Liu, Electrospinning preparation of a graphene oxide nanohybrid proton-exchange membrane for fuel cells, J. Appl. Polym. Sci. 135 (27) (2018) e46443. [71] R. Kumar, C.X. Xu, K. Scott, Graphite oxide/Nafion composite membranes for polymer electrolyte fuel cells, RSC Adv. 2 (23) (2012) 8777-8782. [72] P. Li, W.J. Wu, J.D. Liu, B.B. Shi, Y.Q. Du, Y.F. Li, J.T. Wang, Investigating the nanostructures and proton transfer properties of Nafion-GO hybrid membranes, J. Membr. Sci. 555 (2018) 327-336. [73] C. Simari, P. Stallworth, J. Peng, L. Coppola, S. Greenbaum, I. Nicotera, Graphene oxide and sulfonated-derivative: Proton transport properties and electrochemical behavior of Nafion-based nanocomposites, Electrochim. Acta 297 (2019) 240-249. [74] M.H.U. Rehman, L. Coppola, E. Lufrano, I. Nicotera, C. Simari, Enhancing water retention, transport, and conductivity performance in fuel cell applications: Nafion-based nanocomposite membranes with organomodified graphene oxide nanoplatelets, Energies 16 (23) (2023) 7759. [75] C.S. Yin, C.Q. He, Q.C. Liu, B.Y. Xiong, J.J. Li, Y.W. Zhou, Effect of the orientation of sulfonated graphene oxide (SG) on the gas-barrier properties and proton conductivity of a SG/Nafion composite membrane, J. Membr. Sci. 625 (2021) 119146. [76] F. Mahdi, L. Naji, A. Rahmanian, Fabrication of membrane electrode assembly based on nafion/sulfonated graphene oxide nanocomposite by electroless deposition for proton exchange membrane fuel cells, Surf. Interfaces 23 (2021) 100925. [77] M. Di Virgilio, A. Basso Peressut, V. Arosio, A. Arrigoni, S. Latorrata, G. Dotelli, Functional and environmental performances of novel electrolytic membranes for PEM fuel cells: A lab-scale case study, Clean Technol. 5 (1) (2023) 74-93. [78] H.C. Chien, L.D. Tsai, C.P. Huang, C.Y. Kang, J.N. Lin, F.C. Chang, Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells, Int. J. Hydrog. Energy 38 (31) (2013) 13792-13801. [79] B.A. Aragaw, W.N. Su, J. Rick, B.J. Hwang, Highly efficient synthesis of reduced graphene oxide-Nafion nanocomposites with strong coupling for enhanced proton and electron conduction, RSC Adv. 3 (45) (2013) 23212-23221. [80] W. Jia, B.B. Tang, P.Y. Wu, Novel slightly reduced graphene oxide based proton exchange membrane with constructed long-range ionic nanochannels via self-assembling of nafion, ACS Appl. Mater. Interfaces 9 (27) (2017) 22620-22627. [81] H. Zarrin, D. Higgins, Y. Jun, Z.W. Chen, M. Fowler, Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells, J. Phys. Chem. C 115 (42) (2011) 20774-20781. [82] B. Zhang, Y. Cao, S.T. Jiang, Z. Li, G.W. He, H. Wu, Enhanced proton conductivity of Nafion nanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity, J. Membr. Sci. 518 (2016) 243-253. [83] B. Barik, Y.J. Yun, A. Kumar, H. Bae, Y. Namgung, J.Y. Park, S.J. Song, Highly enhanced proton conductivity of single-step-functionalized graphene oxide/nafion electrolyte membrane towards improved hydrogen fuel cell performance, Int. J. Hydrog. Energy 48 (29) (2023) 11029-11044. [84] B. Barik, A. Kumar, Y. Namgung, L. Mathur, J.Y. Park, S.J. Song, Mixed-ceria reinforced acid functionalized graphene oxide-Nafion electrolyte membrane with enhanced proton conductivity and chemical durability for PEMFCs, Int. J. Hydrog. Energy 48 (75) (2023) 29313-29326. [85] R. Asmatulu, A. Khan, V.K. Adigoppula, G. Hwang, Enhanced transport properties of graphene-based, thin Nafion® membrane for polymer electrolyte membrane fuel cells, Int. J. Energy Res. 42 (2) (2018) 508-519. [86] A.K. Sahu, K. Ketpang, S. Shanmugam, O. Kwon, S. Lee, H. Kim, Sulfonated graphene-nafion composite membranes for polymer electrolyte fuel cells operating under reduced relative humidity, J. Phys. Chem. C 120 (29) (2016) 15855-15866. [87] Y. Kim, K. Ketpang, S. Jaritphun, J.S. Park, S. Shanmugam, A polyoxometalate coupled graphene oxide-Nafion composite membrane for fuel cells operating at low relative humidity, J. Mater. Chem. A 3 (15) (2015) 8148-8155. [88] D.C. Seo, I. Jeon, E.S. Jeong, J.Y. Jho, Mechanical properties and chemical durability of nafion/sulfonated graphene oxide/cerium oxide composite membranes for fuel-cell applications, Polymers 12 (6) (2020) 1375. [89] M. Vinothkannan, A.R. Kim, G. Gnana Kumar, D.J. Yoo, Sulfonated graphene oxide/Nafion composite membranes for high temperature and low humidity proton exchange membrane fuel cells, RSC Adv. 8 (14) (2018) 7494-7508. [90] J. Maiti, N. Kakati, S.P. Woo, Y.S. Yoon, Nafion® based hybrid composite membrane containing GO and dihydrogen phosphate functionalized ionic liquid for high temperature polymer electrolyte membrane fuel cell, Compos. Sci. Technol. 155 (2018) 189-196. [91] A.K. Mishra, N.H. Kim, D. Jung, J.H. Lee, Enhanced mechanical properties and proton conductivity of Nafion-SPEEK-GO composite membranes for fuel cell applications, J. Membr. Sci. 458 (2014) 128-135. [92] D.C. Lee, H.N. Yang, S.H. Park, W.J. Kim, Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell, J. Membr. Sci. 452 (2014) 20-28. [93] Z.Y. Meng, Y.X. Zou, N.N. Li, B. Wang, X.D. Fu, R. Zhang, S.F. Hu, X.J. Bao, X. Li, F. Zhao, Q.T. Liu, Graphene oxide-intercalated microbial montmorillonite to moderate the dependence of nafion-based PEMFCs in high-humidity environments, ACS Appl. Energy Mater. 6 (3) (2023) 1771-1780. [94] K. Feng, B.B. Tang, P.Y. Wu, Sulfonated graphene oxide-silica for highly selective Nafion-based proton exchange membranes, J. Mater. Chem. A 2 (38) (2014) 16083-16092. [95] F.C. Teixeira, A.I. de Sa, A.P.S. Teixeira, V.M. Ortiz-Martinez, A. Ortiz, I. Ortiz, C.M. Rangel, New modified Nafion-bisphosphonic acid composite membranes for enhanced proton conductivity and PEMFC performance, Int. J. Hydrog. Energy 46 (33) (2021) 17562-17571. [96] F.F. Fang, L. Liu, L.F. Min, L. Xu, W. Zhang, Y.X. Wang, Enhanced proton conductivity of Nafion membrane with electrically aligned sulfonated graphene nanoplates, Int. J. Hydrog. Energy 46 (34) (2021) 17784-17792. [97] X.Y. He, G.W. He, A.Q. Zhao, F. Wang, X.L. Mao, Y.H. Yin, L. Cao, B. Zhang, H. Wu, Z.Y. Jiang, Facilitating proton transport in nafion-based membranes at low humidity by incorporating multifunctional graphene oxide nanosheets, ACS Appl. Mater. Interfaces 9 (33) (2017) 27676-27687. [98] L.J. Yang, B.B. Tang, P.Y. Wu, Metal-organic framework-graphene oxide composites: A facile method to highly improve the proton conductivity of PEMs operated under low humidity, J. Mater. Chem. A 3 (31) (2015) 15838-15842. [99] A.R. Kim, C.J. Park, M. Vinothkannan, D.J. Yoo, Sulfonated poly ether sulfone/heteropoly acid composite membranes as electrolytes for the improved power generation of proton exchange membrane fuel cells, Compos. Part B Eng. 155 (2018) 272-281. [100] A.R. Kim, M. Vinothkannan, D.J. Yoo, Artificially designed, low humidifying organic-inorganic (SFBC-50/FSiO2) composite membrane for electrolyte applications of fuel cells, Compos. Part B Eng. 130 (2017) 103-118. [101] F. Ahmed, S.C. Sutradhar, T. Ryu, H. Jang, K. Choi, H.M. Yang, S. Yoon, M.M. Rahman, W. Kim, Comparative study of sulfonated branched and linear poly(phenylene)s polymer electrolyte membranes for fuel cells, Int. J. Hydrog. Energy 43 (10) (2018) 5374-5385. [102] V. Parthiban, S. Akula, S.G. Peera, N. Islam, A.K. Sahu, Proton conducting nafion-sulfonated graphene hybrid membranes for direct methanol fuel cells with reduced methanol crossover, Energy Fuels 30 (1) (2016) 725-734. [103] S. Neelakandan, N.J. K, P. Kanagaraj, R.M. Sabarathinam, A. Muthumeenal, A. Nagendran, Effect of sulfonated graphene oxide on the performance enhancement of acid-base composite membranes for direct methanol fuel cells, RSC Adv. 6 (57) (2016) 51599-51608. [104] S. Gahlot, P.P. Sharma, V. Kulshrestha, P.K. Jha, SGO/SPES-based highly conducting polymer electrolyte membranes for fuel cell application, ACS Appl. Mater. Interfaces 6 (8) (2014) 5595-5601. [105] Y. Devrim, H. Devrim, I. Eroglu, Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells, Int. J. Hydrog. Energy 41 (23) (2016) 10044-10052. [106] A. Ammar, A.M. Al-Enizi, M.A. AlMaadeed, A. Karim, Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes, Arab. J. Chem. 9 (2) (2016) 274-286. [107] V. Di Noto, E. Negro, J.Y. Sanchez, C. Iojoiu, Structure-relaxation interplay of a new nanostructured membrane based on tetraethylammonium trifluoromethanesulfonate ionic liquid and neutralized nafion 117 for high-temperature fuel cells, J. Am. Chem. Soc. 132 (7) (2010) 2183-2195. [108] I. Nicotera, C. Simari, L. Coppola, P. Zygouri, D. Gournis, S. Brutti, F.D. Minuto, A.S. Arico, D. Sebastian, V. Baglio, Sulfonated graphene oxide platelets in nafion nanocomposite membrane: Advantages for application in direct methanol fuel cells, J. Phys. Chem. C 118 (42) (2014) 24357-24368. [109] M.J. Parnian, S. Rowshanzamir, A.K. Prasad, S.G. Advani, High durability sulfonated poly (ether ether ketone)-ceria nanocomposite membranes for proton exchange membrane fuel cell applications, J. Membr. Sci. 556 (2018) 12-22. [110] X.X. Zhou, L.X. Wu, G.X. Zhang, R.Y. Li, X. Hu, X.W. Chang, Y.H. Shen, L. Liu, N.W. Li, Rational design of comb-shaped poly(arylene indole piperidinium) to enhance hydroxide ion transport for H2/O2 fuel cell, J. Membr. Sci. 631 (2021) 119335. [111] Y.Y. Zhao, E. Tsuchida, Y.K. Choe, J. Wang, T. Ikeshoji, A. Ohira, Theoretical studies on the degradation of hydrocarbon copolymer ionomers used in fuel cells, J. Membr. Sci. 487 (2015) 229-239. [112] D.B. Han, S.I. Hossain, B. Son, D.H. Lee, S. Shanmugam, Pyrochlore zirconium gadolinium oxide nanorods composite membrane for suppressing the formation of free radical in PEM fuel cell operating under dry condition, ACS Sustainable Chem. Eng. 7 (19) (2019) 16889-16899. [113] A.M. Baker, L. Wang, W.B. Johnson, A.K. Prasad, S.G. Advani, Nafion membranes reinforced with ceria-coated multiwall carbon nanotubes for improved mechanical and chemical durability in polymer electrolyte membrane fuel cells, J. Phys. Chem. C 118 (46) (2014) 26796-26802. [114] M. Seshimo, M. Ozawa, M. Sone, M. Sakurai, H. Kameyama, Hydrogen permeability and membrane durability of novel Pd/.GAMMA.-alumina graded membrane when a sweep gas is used, J. Chem. Eng. Japan 43 (11) (2010) 932-937. |
[1] | Huanxu Teng, Ronghui You, Huanyi Li, Siqi Shao, Qi Zhou, Ying Yang, Ting Wu, Meihua Zhu, Xiangshu Chen, Hidetoshi Kita. Pervaporation performance and characterization of hydrophilic ZSM-5 zeolite membranes for high inorganic acid and inorganic salts[J]. 中国化学工程学报, 2024, 73(9): 27-33. |
[2] | Yanran Zhu, Yue Zhou, Qian Chen, Rongqiang Fu, Zhaoming Liu, Liang Ge, Tongwen Xu. Waste acid recovery utilizing monovalent cation permselective membranes through selective electrodialysis[J]. 中国化学工程学报, 2024, 71(7): 45-57. |
[3] | Hebin Li, Zifei Meng, Dehua Wang, Ye Lu, Longlong Jiang, Le Zhang, Hanbin Wang, Xiaoxiong Wang. Application of different fiber structures and arrangements by electrospinning in triboelectric nanogenerators[J]. 中国化学工程学报, 2024, 69(5): 177-191. |
[4] | Zhihao Yang, Li Chen, Jian Xue, Miaomiao Su, Fangdan Zhang, Liangxin Ding, Suqing Wang, Haihui Wang. Nano-alumina@cellulose-coated separators with the reinforced-concrete-like structure for high-safety lithium-ion batteries[J]. 中国化学工程学报, 2024, 68(4): 83-93. |
[5] | Yi Zhang, Di Liu, Zhaoli Wang, Junjian Yu, Yanyin Cheng, Wenjing Li, Zhe Wang, Hongzhe Ni, Yuchao Wang. Amino-functionalized UiO-66-doped mixed matrix membranes with high permeation performance and fouling resistance[J]. 中国化学工程学报, 2024, 67(3): 68-77. |
[6] | Weidong Wu, Yukun Zeng, Chen Zhou, Xin Zhou, Shengyang Yang. Engineering graphene oxide and hydrogel coatings on fabrics for smart Janus textiles with superior thermal regulation[J]. 中国化学工程学报, 2024, 74(10): 1-12. |
[7] | Dandan Zhou, Shilong Li, Luyi Chai, Jian Lu, Tianxiang Yu, Yuqing Sun, Wenheng Jing. Constructing fast mass-transfer channels with efficient catalytic ozonation activity in 2D manganese dioxide membranes by intercalating Fe/Mn bimetallic MOF[J]. 中国化学工程学报, 2024, 74(10): 272-286. |
[8] | Elham Ameri, Ali Aghababai Beni, Zahra Pournuroz Nodeh. Design and manufacture of emulsion liquid membrane based on various amine extractants for separation and extraction of succinic acid from fermentation broth[J]. 中国化学工程学报, 2023, 61(9): 173-179. |
[9] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes[J]. 中国化学工程学报, 2023, 60(8): 155-164. |
[10] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer[J]. 中国化学工程学报, 2023, 60(8): 205-211. |
[11] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures[J]. 中国化学工程学报, 2023, 60(8): 242-252. |
[12] | Xiongzhuo Zhu, Dali Gao, Chong Yang, Chunjie Yang. A blast furnace fault monitoring algorithm with low false alarm rate: Ensemble of greedy dynamic principal component analysis-Gaussian mixture model[J]. 中国化学工程学报, 2023, 57(5): 151-161. |
[13] | Fangyuan Ma, Cheng Ji, Jingde Wang, Wei Sun. Early identification of process deviation based on convolutional neural network[J]. 中国化学工程学报, 2023, 56(4): 104-118. |
[14] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture[J]. 中国化学工程学报, 2023, 56(4): 273-280. |
[15] | Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane[J]. 中国化学工程学报, 2023, 55(3): 123-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||