[1] M. Armand, J.M. Tarascon, Building better batteries, Nature 451(7179) (2008) 652-657. [2] X.B. Liu, Z.G. Gao, J.C. Cheng, J.B. Gong, J.K. Wang, Research progress on preparation and purification of fluorine-containing chemicals in lithium-ion batteries, Chin. J. Chem. Eng. 41(2022) 73-84. [3] C.X. Yi, L.J. Zhou, X.Q. Wu, W. Sun, L.S. Yi, Y. Yang, Technology for recycling and regenerating graphite from spent lithium-ion batteries, Chin. J. Chem. Eng. 39(2021) 37-50. [4] H.S. Zheng, J.Q. Huang, T. Dong, Y.F. Sha, H.T. Zhang, J. Gao, S.J. Zhang, A novel strategy of lithium recycling from spent lithium-ion batteries using imidazolium ionic liquid, Chin. J. Chem. Eng. 41(2022) 246-251. [5] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: A review, Energy Environ. Sci. 4(9) (2011) 3243-3262. [6] G. Wu, M. Zeng, L.L. Peng, X.M. Liu, B. Li, J.H. Duan, Chinas new energy development: Status, constraints and reforms, Renew. Sustain. Energy Rev. 53(2016) 885-896. [7] D.X. Yang, L.S. Qiu, J.J. Yan, Z.Y. Chen, M.X. Jiang, The government regulation and market behavior of the new energy automotive industry, J. Clean. Prod. 210(2019) 1281-1288. [8] X.L. Zeng, J.H. Li, N. Singh, Recycling of spent lithium-ion battery: A critical review, Crit. Rev. Environ. Sci. Technol. 44(10) (2014) 1129-1165. [9] K. Kang, Y.S. Meng, J. Breger, C.P. Grey, G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries, Science 311(5763) (2006) 977-980. [10] H. Lee, D.J. Lee, Y.J. Kim, J.K. Park, H.T. Kim, A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries, J. Power Sources 284(2015) 103-108. [11] P.Z. Lyu, X.J. Liu, J. Qu, J.T. Zhao, Y.T. Huo, Z.G. Qu, Z.H. Rao, Recent advances of thermal safety of lithium ion battery for energy storage, Energy Storage Mater. 31(2020) 195-220. [12] A. Kvasha, C. Gutierrez, U. Osa, I. de Meatza, J.A. Blazquez, H. Macicior, I. Urdampilleta, A comparative study of thermal runaway of commercial lithium ion cells, Energy 159(2018) 547-557. [13] F. Larsson, P. Andersson, P. Blomqvist, B.E. Mellander, Toxic fluoride gas emissions from lithium-ion battery fires, Sci. Rep. 7(1) (2017) 10018. [14] D.X. Ouyang, J.H. Liu, M.Y. Chen, J. Wang, Investigation into the fire hazards of lithium-ion batteries under overcharging, Appl. Sci. 7(12) (2017) 1314. [15] C.X. Zu, J.M. Li, B.R. Cai, J.L. Qiu, Y. Zhao, Q. Yang, H. Li, H.G. Yu, Separators with reactive metal oxide coatings for dendrite-free lithium metal anodes, J. Power Sources 555(2023) 232336. [16] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414(6861) (2001) 359-367. [17] X. Wu, N.N. Liu, Z.K. Guo, M.X. Wang, Y. Qiu, D. Tian, B. Guan, L.S. Fan, N.Q. Zhang, Constructing multi-functional Janus separator toward highly stable lithium batteries, Energy Storage Mater. 28(2020) 153-159. [18] H.W. Zhu, H.F. Yu, Z.F. Yang, H. Jiang, C.Z. Li, Tungsten and phosphate polyanion co-doping of Ni-ultrahigh cathodes greatly enhancing crystal structure and interface stability, Chin. J. Chem. Eng. 37(2021) 144-151. [19] L. Jabbour, R. Bongiovanni, D. Chaussy, C. Gerbaldi, D. Beneventi, Cellulose-based Li-ion batteries: A review, Cellulose 20(4) (2013) 1523-1545. [20] S. Li, W.C. Zhu, Q.S. Tang, Z.Z. Huang, P.T. Yu, X.F. Gui, S.D. Lin, J.W. Hu, Y.Y. Tu, Mini review on cellulose-based composite separators for lithium-ion batteries: Recent progress and perspectives, Energy Fuels 35(16) (2021) 12938-12947. [21] E. Lizundia, D.P. Kundu, Advances in natural biopolymer-based electrolytes and separators for battery applications, Adv. Funct. Mater. 31(3) (2021) 2005646. [22] D.H. Han, M. Zhang, P.X. Lu, Y.L. Wan, Q.L. Chen, H.Y. Niu, Z.W. Yu, A multifunctional separator with Mg(OH)2 nanoflake coatings for safe lithium-metal batteries, J. Energy Chem. 52(2021) 75-83. [23] X. Wang, G.J. Xu, Q.F. Wang, C.L. Lu, C.Z. Zong, J.J. Zhang, L.P. Yue, G.L. Cui, A phase inversion based sponge-like polysulfonamide/SiO2 composite separator for high performance lithium-ion batteries, Chin. J. Chem. Eng. 26(6) (2018) 1292-1299. [24] S. Sahebian, S.M. Zebarjad, S.A. Sajjadi, Z. Sherafat, A. Lazzeri, Effect of both uncoated and coated calcium carbonate on fracture toughness of HDPE/CaCO3 nanocomposites, J. Appl. Polym. Sci. 104(6) (2007) 3688-3694. [25] S.S. Zhang, A review on the separators of liquid electrolyte Li-ion batteries, J. Power Sources 164(1) (2007) 351-364. [26] J.H. Ahn, H.M. Kim, Y.J. Lee, D. Esken, D. Dehe, H.A. Song, D.W. Kim, Nanostructured reactive alumina particles coated with water-soluble binder on the polyethylene separator for highly safe lithium-ion batteries, J. Power Sources 506(2021) 230119. [27] N. Delaporte, A. Perea, A. Paolella, J. Dube, M.-J. Vigeant, H. Demers, D. Clement, W. Zhu, V. Gariepy, K. Zaghib, Alumina-flame retardant separators toward safe high voltage Li-ion batteries, J. Power Sources 506(2021) 230189. [28] K. Min, K. Kim, H. An, Y. Go, Y. Lee, D. Lim, S.H. Baeck, Yolk-shell-structured SiO2@N, P Co-doped carbon spheres as highly stable anode materials for lithium ion batteries, J. Power Sources 543(2022) 231849. [29] B.Y. Huang, H.M. Hua, L.Q. Peng, X. Wang, X. Shen, R.Y. Li, P. Zhang, J.B. Zhao, The functional separator for lithium-ion batteries based on phosphonate modified nano-scale silica ceramic particles, J. Power Sources 498(2021) 229908. [30] D. Parikh, C.J. Jafta, B.P. Thapaliya, J. Sharma, H.M. Meyer, C. Silkowski, J.L. Li, Al2O3/TiO2 coated separators: Roll-to-roll processing and implications for improved battery safety and performance, J. Power Sources 507(2021) 230259. [31] C.H. Chao, C.T. Hsieh, W.J. Ke, L.W. Lee, Y.F. Lin, H.W. Liu, S.Y. Gu, C.C. Fu, R.S. Juang, B.C. Mallick, Y.A. Gandomi, C.Y. Su, Roll-to-roll atomic layer deposition of titania coating on polymeric separators for lithium ion batteries, J. Power Sources 482(2021) 228896. [32] H.S. Jeong, S.C. Hong, S.Y. Lee, Effect of microporous structure on thermal shrinkage and electrochemical performance of Al2O3/poly(vinylidene fluoride-hexafluoropropylene) composite separators for lithium-ion batteries, J. Membr. Sci. 364(1-2) (2010) 177-182. [33] C. Shi, P. Zhang, L.X. Chen, P.T. Yang, J.B. Zhao, Effect of a thin ceramic-coating layer on thermal and electrochemical properties of polyethylene separator for lithium-ion batteries, J. Power Sources 270(2014) 547-553. [34] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X.W. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci. 7(12) (2014) 3857-3886. [35] J.H. Ahn, T.S. You, S.M. Lee, D. Esken, D. Dehe, Y.C. Huang, D.W. Kim, Hybrid separator containing reactive, nanostructured alumina promoting in situ gel electrolyte formation for lithium-ion batteries with good cycling stability and enhanced safety, J. Power Sources 472(2020) 228519. [36] H. Jeon, D. Yeon, T. Lee, J. Park, M.H. Ryou, Y.M. Lee, A water-based Al2O3 ceramic coating for polyethylene-based microporous separators for lithium-ion batteries, J. Power Sources 315(2016) 161-168. [37] D.C. Lin, Y.Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat. Nanotechnol. 12(3) (2017) 194-206. [38] G. Buttazzo, F.P. Maiale, Optimal one-dimensional structures for the principal eigenvalue of two-dimensional domains, Nonlinear Anal. 191(2020) 111627. [39] W.G. Xie, Y.P. Liang, L. Wu, W.Y. Liu, A.M. Tang, Y.Q. Luo, Multi-scale modeling study on fibrous network of cellulose separator for lithium-ion battery, Mech. Adv. Mater. Struct. 29(25) (2022) 4557-4568. [40] P.S. Kumar, A.B. Pandit, Modeling hydrodynamic cavitation, Chem. Eng. Technol. 22(12) (1999) 1017-1027. [41] K.S. Suslick, M.M. Mdleleni, J.T. Ries, Chemistry induced by hydrodynamic cavitation, J. Am. Chem. Soc. 119(39) (1997) 9303-9304. [42] J.O. Hinze, Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AlChE. J. 1(3) (1955) 289-295. [43] T.A. Owoseni, J.W. Murray, Z. Pala, E.H. Lester, D.M. Grant, T. Hussain, Suspension high velocity oxy-fuel (SHVOF) spray of delta-theta alumina suspension: Phase transformation and tribology, Surf. Coat. Technol. 371(2019) 97-106. [44] T.J. Singh, S.V. Bhat, Increased lithium-ion conductivity in (PEG)46LiClO4 solid polymer electrolyte with δ-Al2O3 nanoparticles, J. Power Sources 129(2) (2004) 280-287. [45] K.L. Pan, K.C. Tseng, C.H. Wang, Breakup of a droplet at high velocity impacting a solid surface, Exp. Fluids 48(1) (2010) 143-156. [46] R. Rioboo, C. Tropea, M. Marengo, Outcomes from a drop impact on solid surfaces, At. Sprays 11(2) (2001) 12. [47] I.V. Roisman, K. Horvat, C. Tropea, Spray impact: Rim transverse instability initiating fingering and splash, and description of a secondary spray, Phys. Fluids 18(10) (2006) 102104-102104-19. [48] K.M. Goh, X.Y. Hong, K.L. Nyam, Influence of homogenization cycle on the thermal and storage stability of kenaf seed oil (KSO) emulsion, J. Food Meas. Charact. 15(4) (2021) 3307-3313. [49] L.N. de Morais Ribeiro, V.M. Couto, L.F. Fraceto, E. de Paula, Use of nanoparticle concentration as a tool to understand the structural properties of colloids, Sci. Rep. 8(2018) 982. [50] G. Roth, T. Nagy, A. Kuki, M. Hashimov, Z. Vonza, I. Timari, M. Zsuga, S. Keki, Polydispersity ratio and its application for the characterization of poloxamers, Macromolecules 54(21) (2021) 9984-9991. [51] M.H. Lee, I.Y. Lee, Y.G. Chun, B.K. Kim, Formulation and characterization of β-caryophellene-loaded lipid nanocarriers with different carrier lipids for food processing applications, LWT 149(2021) 111805. [52] Y.M. Deng, X.N. Song, Z. Ma, X.H. Zhang, D. Shu, J.M. Nan, Al2O3/PVdF-HFP-CMC/PE separator prepared using aqueous slurry and post-hot-pressing method for polymer lithium-ion batteries with enhanced safety, Electrochim. Acta 212(2016) 416-425. [53] F. Ascione, M. Lamberti, A. Napoli, R. Realfonzo, Experimental bond behavior of Steel Reinforced Grout systems for strengthening concrete elements, Constr. Build. Mater. 232(2020) 117105. [54] N. Ganesan, P.V. Indira, P. Irshad, Effect of ferrocement infill on the strength and behavior of RCC frames under reverse cyclic loading, Eng. Struct. 151(2017) 273-281. [55] V. Greepala, P. Nimityongskul, Influence of heating envelope on structural fire integrity of ferrocement jackets, Fire Technol. 45(4) (2009) 385-404. [56] H. Eskandari, A. Madadi, Investigation of ferrocement channels using experimental and finite element analysis, Eng. Sci. Technol. Int. J. 18(4) (2015) 769-775. [57] G.E. Thermou, V.K. Papanikolaou, C. Lioupis, I. Hajirasouliha, Steel-Reinforced Grout (SRG) strengthening of shear-critical RC beams, Constr. Build. Mater. 216(2019) 68-83. [58] X.N. Feng, M.G. Ouyang, X. Liu, L.G. Lu, Y. Xia, X.M. He, Thermal runaway mechanism of lithium ion battery for electric vehicles: A review, Energy Storage Mater. 10(2018) 246-267. [59] L.Y. Wang, N.P. Deng, J.G. Ju, G. Wang, B.W. Cheng, W.M. Kang, A novel core-shell structured poly-m-phenyleneisophthalamide@polyvinylidene fluoride nanofiber membrane for lithium ion batteries with high-safety and stable electrochemical performance, Electrochim. Acta 300(2019) 263-273. [60] H. Zhang, Y. Zhang, T.G. Xu, A.E. John, Y. Li, W.S. Li, B.K. Zhu, Poly(m-phenylene isophthalamide) separator for improving the heat resistance and power density of lithium-ion batteries, J. Power Sources 329(2016) 8-16. [61] H. Zheng, Z.Y. Wang, L.Y. Shi, Y. Zhao, S. Yuan, Enhanced thermal stability and lithium ion conductivity of polyethylene separator by coating colloidal SiO2 nanoparticles with porous shell, J. Colloid Interface Sci. 554(2019) 29-38. [62] M. Waqas, C. Tan, W.Q. Lv, S. Ali, B. Boateng, W.J. Chen, Z.H. Wei, C. Feng, J. Ahmed, J.B. Goodenough, W.D. He, A highly-efficient composite separator with strong ligand interaction for high-temperature lithium-ion batteries, ChemElectroChem 5(19) (2018) 2722-2728. [63] M. Waqas, S. Ali, W. Lv, D. Chen, B. Boateng, W. He, High-performance PE-BN/PVDF-HFP bilayer separator for lithium-ion batteries, Adv. Mater. Interfaces 6(1) (2019) 1801330. [64] Z. Qiu, S. Yuan, Z. Wang, L. Shi, J.H. Jo, S.T. Myung, J. Zhu, Construction of silica-oxygen-borate hybrid networks on Al2O3-coated polyethylene separators realizing multifunction for high-performance lithium ion batteries, J. Power Sources 472(2020) 228445. [65] C. Shi, J.H. Dai, X. Shen, L.Q. Peng, C. Li, X. Wang, P. Zhang, J.B. Zhao, A high-temperature stable ceramic-coated separator prepared with polyimide binder/Al2O3 particles for lithium-ion batteries, J. Membr. Sci. 517(2016) 91-99. |