[1] J.W. Liu, J. Yang, C. Schneider, R. Franke, R. Jackstell, M. Beller, Tailored palladium catalysts for selective synthesis of conjugated enynes by monocarbonylation of 1, 3-diynes, Angew. Chem. Int. Ed. 59 (23) (2020) 9032-9040. [2] J. Liu, Q. Liu, R. Franke, R. Jackstell, M. Beller, Ligand-controlled palladium-catalyzed alkoxycarbonylation of allenes: Regioselective synthesis of α, β- and β, γ-unsaturated esters, J. Am. Chem. Soc. 137 (26) (2015) 8556-8563. [3] A. Behr, M. Becker, T. Beckmann, L. Johnen, J. Leschinski, S. Reyer, Telomerization: Advances and applications of a versatile reaction, Angew. Chem. Int. Ed Engl. 48 (20) (2009) 3598-3614. [4] F. Ferretti, M. Sharif, S. Dastgir, F. Ragaini, R. Jackstell, M. Beller, Selective palladium-catalysed synthesis of diesters: Alkoxycarbonylation of a CO2-butadiene derived δ-lactone, Green Chem. 19 (15) (2017) 3542-3548. [5] J. Mormul, J. Breitenfeld, O. Trapp, R. Paciello, T. Schaub, P. Hofmann, Synthesis of adipic acid, 1, 6-hexanediamine, and 1, 6-hexanediol via double-n-selective hydroformylation of 1, 3-butadiene, ACS Catal. 6 (5) (2016) 2802-2810. [6] A.M. Silva, M.A. Morales, E.M. Baggio-Saitovitch, E. Jordao, M.A. Fraga, Selective hydrogenation of dimethyl adipate on titania-supported RuSn catalysts, Appl. Catal. A Gen. 353 (1) (2009) 101-106. [7] H.B. Jiang, H.J. Jiang, K. Su, D.M. Zhu, X.L. Zheng, H.Y. Fu, H. Chen, R.X. Li, A Ru-Sn-Co/AlO(OH) as a highly efficient catalyst for hydrogenation of dimethyl adipate to 1, 6-hexanodiol in aqueous phase, Appl. Catal. A Gen. 447 (2012) 164-170. [8] I.N. Vikhareva, G.K. Aminova, A.K. Mazitova, Ecotoxicity of the adipate plasticizers: Influence of the structure of the alcohol substituent, Molecules 26 (16) (2021) 4833. [9] J. Yang, J.W. Liu, Y. Ge, W.H. Huang, F. Ferretti, H. Neumann, H.J. Jiao, R. Franke, R. Jackstell, M. Beller, Efficient palladium-catalyzed carbonylation of 1, 3-dienes: Selective synthesis of adipates and other aliphatic diesters, Angew. Chem. Int. Ed Engl. 60 (17) (2021) 9527-9533. [10] M.H. Thiemens, W.C. Trogler, Nylon production: An unknown source of atmospheric nitrous oxide, Science 251 (4996) (1991) 932-934. [11] Z.J. Bryan, A.C. Lee, Production of Unsaturated Monoesters by the Rhodium Catalyzed Carbonylation of Conjugated Diolefins, U.S. Pat., 4236023, 1964. [12] C.K. Hsu, F. Dobinson, Dimethyl Adipate from Butadiene, U.S. Pat., 3161672, 1986. [13] E.M. Atadan, H.S. Bruner Jr., Process for the Preparation of Adipic Acid or Pentenoic Acid, U.S. Pat., 5292944, 1994. [14] E. Drent, W.W. Jager, Process for the Carbonylation of Conjugated Dienes, U.S. Pat., 6737542, 2004. [15] J. Yang, J.W. Liu, Y. Ge, W.H. Huang, H. Neumann, R. Jackstell, M. Beller, Direct and selective synthesis of adipic and other dicarboxylic acids by palladium-catalyzed carbonylation of allylic alcohols, Angew. Chem. Int. Ed Engl. 59 (46) (2020) 20394-20398. [16] Y. Zhao, D.G. Truhlar, Density functionals with broad applicability in chemistry, Acc. Chem. Res. 41 (2) (2008) 157-167. [17] D.S. Sholl, J.A. Steckel, Density Functional Theory. Wiley, 2009. [18] L. Crawford, D.J. Cole-Hamilton, E. Drent, M. Buhl, Mechanism of alkyne alkoxycarbonylation at a Pd catalyst with P, N hemilabile ligands: A density functional study, Chemistry 20 (43) (2014) 13923-13926. [19] S. Ahmad, L.E. Crawford, M. Buhl, Palladium-catalysed methoxycarbonylation of ethene with bidentate diphosphine ligands: A density functional theory study, Phys. Chem. Chem. Phys. 22 (42) (2020) 24330-24336. [20] R. Gholizadeh, Y.X. Yu, N2O+CO reaction over Si- and Se-doped graphenes: An ab initio DFT study, Appl. Surf. Sci. 357 (2015) 1187-1195. [21] J. Wu, J.H. Li, Y.X. Yu, Highly stable Mo-doped Fe2P and Fe3P monolayers as low-onset-potential electrocatalysts for nitrogen fixation, Catal. Sci. Technol. 11 (4) (2021) 1419-1429. [22] Y.X. Yu, Theoretical insights into surface-phase transition and ion competition during alkali ion intercalation on the Cu4Se4 nanosheet, Phys. Chem. Chem. Phys. 26 (1) (2024) 323-335. [23] M. Frisch, G. Trucks, H. B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, G. Petersson, and H. Nakatsuji, Gaussian 16, Gaussian, Inc. Wallingford, CT, 2016. [24] C.R. Shen, X.F. Wu, Palladium-catalyzed carbonylative multicomponent reactions, Chemistry 23 (13) (2017) 2973-2987. [25] V. Vetere, C. Adamo, P. Maldivi, Performance of the ‘parameter free’ PBE0 functional for the modeling of molecular properties of heavy metals, Chem. Phys. Lett. 325 (1-3) (2000) 99-105. [26] A.D. Becke, Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing, J. Chem. Phys. 104 (3) (1996) 1040-1046. [27] J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B 46 (11) (1992) 6671-6687. [28] C.A. Guido, E. Bremond, C. Adamo, P. Cortona, Communication: One third: A new recipe for the PBE0 paradigm, J. Chem. Phys. 138 (2) (2013) 021104. [29] J.M. del Campo, J.L. Gazquez, S.B. Trickey, A. Vela, Non-empirical improvement of PBE and its hybrid PBE0 for general description of molecular properties, J. Chem. Phys. 136 (10) (2012) 104108. [30] C. Adamo, M. Cossi, V. Barone, An accurate density functional method for the study of magnetic properties: The PBE0 model, J. Mol. Struct. THEOCHEM 493 (1-3) (1999) 145-157. [31] P.L. Arnold, E. Hollis, G.S. Nichol, J.B. Love, J.C. Griveau, R. Caciuffo, N. Magnani, L. Maron, L. Castro, A. Yahia, S.O. Odoh, G. Schreckenbach, Oxo-functionalization and reduction of the uranyl ion through lanthanide-element bond homolysis: Synthetic, structural, and bonding analysis of a series of singly reduced uranyl-rare earth 5f1-4f(n) complexes, J. Am. Chem. Soc. 135 (10) (2013) 3841-3854. [32] B. Barcs, L. Kollar, T. Kegl, Density functional study on the mechanism of nickel-mediated diazo carbonylation, Organometallics 31 (23) (2012) 8082-8097. [33] C. Yang, M.S. Li, W.K. Dai, J. Wei, Q. Yang, Y. Feng, W.X. Yang, J. Ding, Y. Zheng, M.Y. Wang, X.B. Ma, Solvent effect on mechanistic pathways in Rh-catalyzed hydroformylation of formaldehyde, Mol. Catal. 524 (2022) 112248. [34] M. Jain, J.R. Chelikowsky, S.G. Louie, Reliability of hybrid functionals in predicting band gaps, Phys. Rev. Lett. 107 (21) (2011) 216806. [35] C. Legault, CYLview20: Visualization and analysis software for computational chemistry, CYLview, 2020. [36] P. Roesle, C.J. Durr, H.M. Moller, L. Cavallo, L. Caporaso, S. Mecking, Mechanistic features of isomerizing alkoxycarbonylation of methyl oleate, J. Am. Chem. Soc. 134 (42) (2012) 17696-17703. [37] W. Clegg, M. R. J. Elsegood, G. R. Eastham, R. P. Tooze, X.L. Wang, K. Whiston, Highly active and selective catalysts for the production of methyl propanoate via the methoxycarbonylation of ethene, Chem. Commun. (18) (1999) 1877-1878. [38] P. Roesle, L. Caporaso, M. Schnitte, V. Goldbach, L. Cavallo, S. Mecking, A comprehensive mechanistic picture of the isomerizing alkoxycarbonylation of plant oils, J. Am. Chem. Soc. 136 (48) (2014) 16871-16881. [39] C. Jimenez Rodriguez, D.F. Foster, G.R. Eastham, D.J. Cole-Hamilton, Highly selective formation of linear esters from terminal and internal alkenes catalysed by palladium complexes of bis-(di-tert-butylphosphinomethyl)benzene, Chem. Commun. (15) (2004) 1720-1721. [40] M. Beller, A. Krotz, W. Baumann, Palladium-catalyzed methoxycarbonylation of 1, 3-butadiene: Catalysis and mechanistic studies, Adv. Synth. Catal. 344 (5) (2002) 517. |