[1] A. Asghar, A.A. Abdul Raman, W.M.A. Wan Daud, Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review, J. Cleaner Prod. 87(2015) 826-838. [2] M.G. Seo, H.J. Kim, S.S. Han, K.Y. Lee, Direct synthesis of hydrogen peroxide from hydrogen and oxygen using tailored Pd nanocatalysts: A review of recent findings, Catal. Surv. Asia 21(2016) 1-12. [3] R. Hage, A. Lienke, Applications of transition-metal catalysts to textile and wood-pulp bleaching, Angew. Chem. Int. Ed. 45(2006) 206-222. [4] Z. Pan, K. Wang, Y. Wang, P. Tsiakaras, S. Song, In-situ electrosynthesis of hydrogen peroxide and wastewater treatment application: A novel strategy for graphite felt activation, Appl. Catal. B 237(2018) 392-400. [5] Y. Morimoto, S. Bunno, N. Fujieda, H. Sugimoto, S. Itoh, Direct hydroxylation of benzene to phenol using hydrogen peroxide catalyzed by nickel complexes supported by pyridylalkylamine ligands, J. Am. Chem. Soc. 137(2015) 5867-5870. [6] B. Puértolas, A.K. Hill, T. García, B. Solsona, L. Torrente-Murciano, In-situ synthesis of hydrogen peroxide in tandem with selective oxidation reactions: A mini-review, Catal. Today 248(2015) 115-127. [7] E. Brillas, I. Sirés, M.A. Oturan, Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry, Chem. Rev. 109(2009) 6570-6631. [8] S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvioli, V. Čolić, R. Frydendal, J. Rossmeisl, I. Chorkendorff, I.E.L. Stephens, Toward the decentralized electrochemical production of H2O2: A focus on the catalysis, ACS Catal. 8(2018) 4064-4081. [9] E. Yuan, C. Wu, G. Liu, G. Li, L. Wang, Effects of SBA-15 physicochemical properties on performance of Pd/SBA-15 catalysts in 2-ethyl-anthraquinone hydrogenation, J. Ind. Eng. Chem. 66(2018) 158-167. [10] Y. Yi, L. Wang, G. Li, H. Guo, A review on research progress in the direct synthesis of hydrogen peroxide from hydrogen and oxygen: noble-metal catalytic method, fuel-cell method and plasma method, Catal. Sci. Technol. 6(2016) 1593-1610. [11] J. Kim, Y.M. Chung, S.M. Kang, C.H. Choi, B.Y. Kim, Y.T. Kwon, T.J. Kim, S.H. Oh, C.S. Lee, Palladium nanocatalysts immobilized on functionalized resin for the direct synthesis of hydrogen peroxide from hydrogen and oxygen, ACS Catal. 2(2012) 1042-1048. [12] P. Biasi, S. Sterchele, F. Bizzotto, M. Manzoli, S. Lindholm, P. Ek, J. Bobacka, J.P. Mikkola, T. Salmi, Application of the Catalyst Wet Pretreatment Method (CWPM) for catalytic direct synthesis of H2O2, Catal. Today 246(2015) 207-215. [13] T. García, S. Agouram, A. Dejoz, J.F. Sánchez-Royo, L. Torrente-Murciano, B. Solsona, Enhanced H2O2 production over Au-rich bimetallic Au-Pd nanoparticles on ordered mesoporous carbons, Catal. Today 248(2015) 48-57. [14] D. Gudarzi, W. Ratchananusorn, I. Turunen, M. Heinonen, T. Salmi, Promotional effects of Au in Pd-Au bimetallic catalysts supported on activated carbon cloth (ACC) for direct synthesis of H2O2 from H2 and O2, Catal. Today 248(2015) 58-68. [15] I. Yamanaka, T. Onizawa, S. Takenaka, K. Otsuka, Direct and continuous production of hydrogen peroxide with 93% selectivity using a fuel-cell system, Angew. Chem. Int. Ed. 42(2003) 3653-3655. [16] T. Inoue, K. Ohtaki, J. Adachi, M. Lu, S. Murakami, Direct synthesis of hydrogen peroxide using glass fabricated microreactor -Multichannel operation and catalyst comparison, Catal. Today 248(2015) 169-176. [17] T. Ishihara, R. Nakashima, Y. Ooishi, H. Hagiwara, M. Matsuka, S. Ida, H2O2 synthesis by selective oxidation of H2 over Pd-Au bimetallic nano colloid catalyst under addition of NaBr and H3PO4, Catal. Today 248(2015) 35-39. [18] Z. Khan, N.F. Dummer, J.K. Edwards, Silver-palladium catalysts for the direct synthesis of hydrogen peroxide, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 376(2017) 20170058. [19] A. Gervasini, P. Carniti, F. Desmedt, P. Miquel, Liquid phase direct synthesis of H2O2: Activity and selectivity of Pd-dispersed phase on acidic niobia-silica supports, ACS Catal. 7(2017) 4741-4752. [20] V. Paunovic, V. Ordomsky, M. Fernanda Neira D’Angelo, J.C. Schouten, T.A. Nijhuis, Direct synthesis of hydrogen peroxide over Au-Pd catalyst in a wallcoated microchannel, J. Catal. 309(2014) 325-332. [21] S. Quon, D.Y. Jo, G.-H. Han, S.S. Han, M.-G. Seo, K.-Y. Lee, Role of Pt atoms on Pd (11 1) surface in the direct synthesis of hydrogen peroxide: Nano-catalytic experiments and DFT calculations, J. Catal. 368(2018) 237-247. [22] S. Sterchele, P. Biasi, P. Centomo, S. Campestrini, A. Shchukarev, A.R. Rautio, J.P. Mikkola, T. Salmi, M. Zecca, The effect of the metal precursor-reduction with hydrogen on a library of bimetallic Pd-Au and Pd-Pt catalysts for the direct synthesis of H2O2, Catal. Today 248(2015) 40-47. [23] S.J. Freakley, Q. He, J.H. Harrhy, L. Lu, D.A. Crole, D.J. Morgan, E.N. Ntainjua, J.K. Edwards, A.F. Carley, A.Y. Borisevich, C.J. Kiely, G.J. Hutchings, Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity, Science 351(2016) 965-968. [24] S. Yook, H.C. Kwon, Y.G. Kim, W. Choi, M. Choi, Significant roles of carbon pore and surface structure in AuPd/C catalyst for achieving high chemoselectivity in direct hydrogen peroxide synthesis, ACS Sustainable Chem. Eng. 5(2016) 1208-1216. [25] H. Xu, D. Cheng, Y. Gao, Design of high-performance Pd-based alloy nanocatalysts for direct synthesis of H2O2, ACS Catal. 7(2017) 2164-2170. [26] M.G. Seo, D.W. Lee, S.S. Han, K.Y. Lee, Direct synthesis of hydrogen peroxide from hydrogen and oxygen over mesoporous silica-shell-coated, palladiumnanocrystal-grafted SiO2 nanobeads, ACS Catal. 7(2017) 3039-3048. [27] R. Arrigo, M.E. Schuster, S. Abate, G. Giorgianni, G. Centi, S. Perathoner, S. Wrabetz, V. Pfeifer, M. Antonietti, R. Schlögl, Pd supported on carbon nitride boosts the direct hydrogen peroxide synthesis, ACS Catal. 6(2016) 6959-6966. [28] S. Yook, H. Shin, H. Kim, M. Choi, Selective dissociation of dihydrogen over dioxygen on a hindered platinum surface for the direct synthesis of hydrogen peroxide, ChemCatChem 6(2014) 2836-2842. [29] G. Blanco-Brieva, M. Montiel-Argaiz, F. Desmedt, P. Miquel, J.M. CamposMartin, J.L.G. Fierro, Effect of the acidity of the groups of functionalized silicas on the direct synthesis of H2O2, Top. Catal. 60(2017) 1151-1155. [30] D.W. Flaherty, Direct synthesis of H2O2 from H2 and O2 on Pd catalysts: Current understanding, outstanding questions, and research needs, ACS Catal. 8(2018) 1520-1527. [31] F. Menegazzo, M. Manzoli, M. Signoretto, F. Pinna, G. Strukul, H2O2 direct synthesis under mild conditions on Pd-Au samples: Effect of the morphology and of the composition of the metallic phase, Catal. Today 248(2015) 18-27. [32] G. Centi, S. Perathoner, S. Abate, Direct synthesis of hydrogen peroxide, Recent Adv. (2009) 253-287. [33] S. Kanungo, L. van Haandel, E.J.M. Hensen, J.C. Schouten, M.F. Neira d’Angelo, Direct synthesis of H2O2 in AuPd coated micro channels: An in-situ X-Ray absorption spectroscopic study, J. Catal. 370(2019) 200-209. [34] S. Chinta, A mechanistic study of H2O2 and H2O formation from H2 and BO2 catalyzed by palladium in an aqueous medium, J. Catal. 225(2004) 249-255. [35] Y. Tang, Z. Zhang, M. Lu, B. Chen, W. Fu, J. Gan, G. Qian, X. Duan, X. Zhou, Sitedependent activity and selectivity of H2O2 formation from H2 and O2 over Aubased catalysts, Ind. Eng. Chem. Res. 58(2019) 15119-15126. [36] F. Wang, C. Xia, S.P. de Visser, Y. Wang, How does the oxidation state of palladium surfaces affect the reactivity and selectivity of direct synthesis of hydrogen peroxide from hydrogen and oxygen gases? A density functional study, J. Am. Chem. Soc. 141(2019) 901-910. [37] Y. Guo, R. Hu, X. Zhou, J. Yu, L. Wang, A first principle study on the adsorption of H2O2 on CuO (111) and Ag/CuO(111) surface, Appl. Surf. Sci. 479(2019) 989-996. [38] M. Nugraha, M.-C. Tsai, W.-N. Su, H.-L. Chou, B.J. Hwang, Descriptor study by density functional theory analysis for the direct synthesis of hydrogen peroxide using palladium-gold and palladium-mercury alloy catalysts, Mol. Syst. Des. Eng. 3(2018) 896-907. [39] S. Sterchele, P. Biasi, P. Centomo, P. Canton, S. Campestrini, T. Salmi, M. Zecca, Pd-Au and Pd-Pt catalysts for the direct synthesis of hydrogen peroxide in absence of selectivity enhancers, Appl. Catal. A 468(2013) 160-174. [40] J.K. Edwards, J. Pritchard, L. Lu, M. Piccinini, G. Shaw, A.F. Carley, D.J. Morgan, C. J. Kiely, G.J. Hutchings, The direct synthesis of hydrogen peroxide using platinum-promoted gold-palladium catalysts, Angew. Chem. 126(2014) 2413-2416. [41] B.E. Solsona, J.K. Edwards, P. Landon, A.F. Carley, A. Herzing, C.J. Kiely, G.J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 using Al2O3 supported Au-Pd catalysts, Chem. Mater. 18(2006) 2689-2695. [42] J.K. Edwards, A. Thomas, B.E. Solsona, P. Landon, A.F. Carley, G.J. Hutchings, Comparison of supports for the direct synthesis of hydrogen peroxide from H2 and O2 using Au-Pd catalysts, Catal. Today 122(2007) 397-402. [43] J.K. Edwards, S.J. Freakley, R.J. Lewis, J.C. Pritchard, G.J. Hutchings, Advances in the direct synthesis of hydrogen peroxide from hydrogen and oxygen, Catal. Today 248(2015) 3-9. [44] N. Gemo, P. Biasi, P. Canu, F. Menegazzo, F. Pinna, A. Samikannu, K. Kordás, T.O. Salmi, J.-P. Mikkola, Reactivity aspects of SBA15-based doped supported catalysts: H2O2 direct synthesis and disproportionation reactions, Top. Catal. 56(2013) 540-549. [45] E.N. Ntainjua, S.J. Freakley, G.J. Hutchings, Direct synthesis of hydrogen peroxide using ruthenium catalysts, Top. Catal. 55(2012) 718-722. [46] T. Harada, S. Ikeda, M. Miyazaki, T. Sakata, H. Mori, M. Matsumura, A simple method for preparing highly active palladium catalysts loaded on various carbon supports for liquid-phase oxidation and hydrogenation reactions, J. Mol. Catal. A: Chem. 268(2007) 59-64. [47] F. Menegazzo, M. Signoretto, G. Frison, F. Pinna, G. Strukul, M. Manzoli, F. Boccuzzi, When high metal dispersion has a detrimental effect: Hydrogen peroxide direct synthesis under very mild and nonexplosive conditions catalyzed by Pd supported on silica, J. Catal. 290(2012) 143-150. [48] S. Sterchele, M. Bortolus, P. Biasi, D. Boström, J.-P. Mikkola, T. Salmi, Is selective hydrogenation of molecular oxygen to H2O2 affected by strong metal-support interactions on Pd/TiO2 catalysts? A case study using commercially available TiO2, C. R. Chim. 19(2016) 1011-1020. [49] Y. Ye, J. Chun, S. Park, T.J. Kim, Y.-M. Chung, S.-H. Oh, I.K. Song, J. Lee, A study of the palladium size effect on the direct synthesis of hydrogen peroxide from hydrogen and oxygen using highly uniform palladium nanoparticles supported on carbon, Korean J. Chem. Eng. 29(2012) 1115-1118. [50] L’. Pikna, O. Milkovič, K. Saksl, M. Heželová, M. Smrčová, P. Puliš, Š. Michalik, J. Gamcová, The structure of nano-palladium deposited on carbon-based supports, J. Solid State Chem. 212(2014) 197-204. [51] F. Menegazzo, P. Burti, M. Signoretto, M. Manzoli, S. Vankova, F. Boccuzzi, F. Pinna, G. Strukul, Effect of the addition of Au in zirconia and ceria supported Pd catalysts for the direct synthesis of hydrogen peroxide, J. Catal. 257(2008) 369-381. [52] P. Weerachawanasak, O. Mekasuwandumrong, M. Arai, S.-I. Fujita, P. Praserthdam, J. Panpranot, Effect of strong metal-support interaction on the catalytic performance of Pd/TiO2 in the liquid-phase semihydrogenation of phenylacetylene, J. Catal. 262(2009) 199-205. [53] R. Tu, S. Chen, W. Cao, S. Zhang, L. Li, T. Ji, J. Zhu, J. Li, X. Lu, The effect of H2O2 desorption on achieving improved selectivity for direct synthesis of H2O2 over TiO2(B)/anatase supported Pd catalyst, Catal. Commun. 89(2017) 69-72. [54] I.Z. Koleva, H.A. Aleksandrov, G.N. Vayssilov, Influence of the adsorption of CO on the electronic structure of platinum clusters and nanowires deposited on CeO2(111) and c-Al2O3(001) surfaces, Catal. Today 357(2020) 442-452. [55] M.P. Casaletto, A. Longo, A.M. Venezia, A. Martorana, A. Prestianni, Metalsupport and preparation influence on the structural and electronic properties of gold catalysts, Appl. Catal. A 302(2006) 309-316. [56] J. Engel, S. Francis, A. Roldan, The influence of support materials on the structural and electronic properties of gold nanoparticles -A DFT study, Phys. Chem. Chem. Phys. 21(2019) 19011-19025. [57] Y. Han, M. Zhang, W. Li, J. Zhang, Effect of TiO2 support on the structural and electronic properties of PdmAgn clusters: A first-principles study, Phys. Chem. Chem. Phys. 14(2012) 8683-8692. [58] E.M. Goliaei, N. Seriani, Structure and electronic properties of small silver-gold clusters on titania photocatalysts for H2O2 production: An investigation with density functional theory, J. Phys. Chem. C 123(2019) 2855-2863. [59] P. Chen, A. Khetan, F. Yang, V. Migunov, P. Weide, S.P. Stürmer, P. Guo, K. Kähler, W. Xia, J. Mayer, H. Pitsch, U. Simon, M. Muhler, Experimental and theoretical understanding of nitrogen-doping-induced strong metal-support interactions in Pd/TiO2 catalysts for nitrobenzene hydrogenation, ACS Catal. 7(2017) 1197-1206. [60] Z. Wei, Z. Yao, Q. Zhou, G. Zhuang, X. Zhong, S. Deng, X. Li, J. Wang, Optimizing alkyne hydrogenation performance of Pd on carbon in situ decorated with oxygen-deficient TiO2 by integrating the reaction and diffusion, ACS Catal. 9(2019) 10656-10667. [61] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(1996) 3865-3868. [62] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6(1996) 15-50. [63] G. Kresse, J. Hafner, Ab initio molecular-dynamics simulation of the liquidmetal-amorphous-semiconductor transition in germanium, Phys. Rev. B 49(1994) 14251-14269. [64] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(1976) 5188-5192. [65] Z.-P. Liu, P. Hu, General rules for predicting where a catalytic reaction should occur on metal surfaces: A density functional theory study of C-H and C-O Bond Breaking/Making On Flat, Stepped, And Kinked Metal Surfaces, J. Am. Chem. Soc. 125(2003) 1958-1967. [66] C. Zhang, P. Hu, A. Alavi, A general mechanism for CO oxidation on closepacked transition metal surfaces, J. Am. Chem. Soc. 121(1999) 7931-7932. [67] A. Alavi, P. Hu, T. Deutsch, P.L. Silvestrelli, J. Hutter, CO oxidation on Pt(111): An ab initio density functional theory study, Phys. Rev. Lett. 80(1998) 3650-3653. [68] R.D. Cortright, J.A. Dumesic, Kinetics of heterogeneous catalytic reactions: Analysis of reaction schemes, Adv. Catal. 46(2001) 161-264. [69] H.F. Yang, P.Y. Xie, H.Y. Yu, X.N. Li, J.G. Wang, The effect of CNTs on structures and catalytic properties of AuPd clusters for H2O2 synthesis, Phys. Chem. Chem. Phys. 14(2012) 16654-16659. [70] Z.H. Yao, C.X. Guo, Y. Mao, P. Hu, Quantitative determination of C-C coupling mechanisms and detailed analyses on the activity and selectivity for FischerTropsch synthesis on Co(0001): Microkinetic modeling with coverage effects, ACS Catal. 9(2019) 5957-5973. [71] M. Nugraha, M.C. Tsai, J. Rick, W.N. Su, H.L. Chou, B.J. Hwang, DFT study reveals geometric and electronic synergisms of palladium-mercury alloy catalyst used for hydrogen peroxide formation, Appl. Catal. A 547(2017) 69-74. [72] J. Cheng, X.Q. Gong, P. Hu, C.M. Lok, P. Ellis, S. French, A quantitative determination of reaction mechanisms from density functional theory calculations: Fischer-Tropsch synthesis on flat and stepped cobalt surfaces, J. Catal. 254(2008) 285-295. [73] J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, C.M. Lok, Bronsted-Evans-Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis, J. Phys. Chem. C 112(2008) 1308-1311. [74] J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, C.M. Lok, A first-principles study of oxygenates on Co surfaces in Fischer-Tropsch synthesis, J. Phys. Chem. C 112(2008) 9464-9473. [75] J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, C.M. Lok, An energy descriptor to quantify methane selectivity in Fischer-Tropsch synthesis: A density functional theory study, J. Phys. Chem. C 113(2009) 8858-8863. [76] J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, C.M. Lok, Some understanding of Fischer-Tropsch synthesis from density functional theory calculations, Top. Catal. 53(2010) 326-337. [77] J. Cheng, P. Hu, P. Ellis, S. French, G. Kelly, C.M. Lok, Density functional theory study of iron and cobalt carbides for Fischer-Tropsch synthesis, J. Phys. Chem. C 114(2010) 1085-1093. [78] B. Yang, R. Burch, C. Hardacre, G. Headdock, P. Hu, Influence of surface structures, subsurface carbon and hydrogen, and surface alloying on the activity and selectivity of acetylene hydrogenation on Pd surfaces: A density functional theory study, J. Catal. 305(2013) 264-276. [79] B. Yuan, Z. Yao, C. Qiu, H. Zheng, Y. Yan, Q. Zhang, X. Sun, Y. Gu, X. Zhong, J. Wang, Synergistic effect of size-dependent PtZn nanoparticles and zinc singleatom sites for electrochemical ozone production in neutral media, J. Energy Chem. 51(2020) 312-322. |