[1] L.Y. Meng, M.G. Ma, X.X. Ji, Preparation of lignin-based carbon materials and its application as a sorbent, Materials 12 (7) (2019) 1111. [2] L.H. Gan, L. Lyu, T.R. Shen, S. Wang, Sulfonated lignin-derived ordered mesoporous carbon with highly selective and recyclable catalysis for the conversion of fructose into 5-hydroxymethylfurfural, Appl. Catal., A-Gen. 574 (2019) 132-143. [3] S. Wang, L. Lyu, G.B. Sima, Y. Cui, B.X. Li, X.Q. Zhang, L.H. Gan, Optimization of fructose dehydration to 5-hydroxymethylfurfural catalyzed by SO3H-bearing lignin-derived ordered mesoporous carbon, Korean J. Chem. Eng. 36 (7) (2019) 1042-1050. [4] M. Li, Q. Zhang, B. Luo, C. Chen, S. Wang, D. Min, Lignin-based carbon solid acid catalyst prepared for selectively converting fructose to 5-hydroxymethylfurfural, Ind. Crop. Prod. 145 (2019) 111920. [5] R. Ding, H.C. Wu, M. Thunga, N. Bowler, M.R. Kessler, Processing and characterization of low-cost electrospun carbon fibers from organosolv lignin/polyacrylonitrile blends, Carbon 100 (2016) 126-136. [6] F.J. Garcia-Mateos, T. Cordero-Lanzac, R. Berenguer, E. Morallon, D. Cazorla-Amoros, J. Rodriguez-Mirasol, T. Cordero, Lignin-derived Pt supported carbon (submicron)fiber electrocatalysts for alcohol electro-oxidation, Appl. Catal., B-Environ. 211 (2017) 18-30. [7] T.D. Swift, H. Nguyen, Z. Erdman, J.S. Kruger, V. Nikolakis, D.G. Vlachos, Tandem Lewis acid/Broensted acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural using zeolite beta, J. Catal. 333 (2016) 149-161. [8] A.J. Ragauskas, C.K. Williams, B.H. Davison, G. Britovsek, J. Cairney, C.A. Eckert, W.J. Frederick, J.P. Hallett, D.J. Leak, C.L. Liotta, J.R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, The path forward for biofuels and biomaterials, Science 311 (5760) (2006) 484-489. [9] W. Guo, Z. Zhang, J. Hacking, H.J. Heeres, J. Yue, Selective fructose dehydration to 5-hydroxymethylfurfural from a fructose-glucose mixture over a sulfuric acid catalyst in a biphasic system: Experimental study and kinetic modelling, Chem. Eng. J. 409 (2020) 128182. [10] W.Z. Guo, H.J. Heeres, J. Yue, Continuous synthesis of 5-hydroxymethylfurfural from glucose using a combination of AlCl3 and HCl as catalyst in a biphasic slug flow capillary microreactor, Chem. Eng. J. 381 (2020) 122754. [11] M.H. Li, W.Z. Li, Y.J. Lu, H. Jameel, H.M. Chang, L.L. Ma, High conversion of glucose to 5-hydroxymethylfurfural using hydrochloric acid as a catalyst and sodium chloride as a promoter in a water/γ-valerolactone system, RSC Adv. 7 (24) (2017) 14330-14336. [12] Y.F. Nie, Q.D. Hou, W.Z. Li, C.Y.L. Bai, X.Y. Bai, M.T. Ju, Efficient synthesis of furfural from biomass using SnCl4 as catalyst in ionic liquid, Molecules 24 (3) (2019) 594. [13] Y. Yang, C.W. Hu, M.M. Abu-Omar, Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system, Green Chem. 14 (2) (2012) 509-513. [14] H.B. Phan, C.M. Luong, T.H. Nguyen, L.D. Nguyen, K.N. Tran, H.T.T. Nguyen, P.H. Tran, A facile and practical conversion of carbohydrates into HMF using metal chlorides in [DMSO][CholineCl] deep eutectic solvent, Biomass Bioenergy 174 (2023) 106855. [15] Y. Nishimura, M. Suda, M. Kuroha, H. Kobayashi, K. Nakajima, A. Fukuoka, Synthesis of 5-hydroxymethylfurfural from highly concentrated aqueous fructose solutions using activated carbon, Carbohydr. Res. 486 (2019) 107826. [16] A. Rusanen, R. Lahti, K. Lappalainen, J. Karkkainen, T. Hu, H. Romar, U. Lassi, Catalytic conversion of glucose to 5-hydroxymethylfurfural over biomass-based activated carbon catalyst, Catal. Today 357 (2020) 94-101. [17] L. Li, J.H. Ding, J.G. Jiang, Z.G. Zhu, P. Wu, One-pot synthesis of 5-hydroxymethylfurfural from glucose using bifunctional [Sn,Al]-Beta catalysts, Chinese J. Catal. 36 (6) (2015) 820-828. [18] O. Ojelabi, S. Yousatit, U. Rashid, C. Ngamcharussrivichai, Mild dealumination of H-ZSM-5 zeolite for enhanced conversion of glucose into 5-hydroxymethylfurfural in a biphasic solvent system, Catalysts 13 (6) (2023) 982. [19] X.Y. Xing, X. Shi, M.Y. Ruan, Q.C. Wei, Y. Guan, H. Gao, S.Q. Xu, Sulfonic acid functionalized β zeolite as efficient bifunctional solid acid catalysts for the synthesis of 5-hydroxymethylfurfural from cellulose, Int. J. Biol. Macromol. 242 (2023) 125037. [20] X.X. Yang, M.M. Sadughi, A. Bahadoran, M. Al-Haideri, P.G. Kargar, A.S. Noori, S.M. Sajjadinezhad, A new method for conversion of fructose and glucose to 5-hydroxyme- thylfurfural by magnetic mesoporous of SBA-16 was modified to sulfonic acid as Lewis's acid catalysts, Renew. Energ. 209 (2023) 145-156. [21] T. Huang, Y.H. Zhou, X.H. Zhang, D.Y. Peng, X.L. Nie, J. Chen, W.M. Xiong, Conversion of carbohydrates into furfural and 5-hydroxymethylfurfural using furfuryl alcohol resin-based solid acid as catalyst, Cellulose 29 (3) (2022) 1419-1433. [22] S. Pumrod, A. Kaewchada, S. Roddecha, A. Jaree, 5-HMF production from glucose using ion exchange resin and alumina as a dual catalyst in a biphasic system, RSC Adv. 10 (16) (2020) 9492-9498. [23] Y. Zhang, J.G. Wang, J.H. Wang, Y. Wang, M. Wang, H.Y. Cui, F. Song, X.Y. Sun, Y.J. Xie, W.M. Yi, Al2O3-TiO2 modified sulfonated carbon with hierarchically ordered pores for glucose conversion to 5-HMF, ChemistrySelect 4 (19) (2019) 5724-5731. [24] A.A. Silahua-Pavon, C.G. Espinosa-Gonzalez, F. Ortiz-Chi, J.G. Pacheco-Sosa, H. Perez-Vidal, J.C. Arevalo-Perez, S. Godavarthi, J.G. Torres-Torres, Production of 5-HMF from glucose using TiO2-ZrO2 catalysts: Effect of the sol-gel synthesis additive, Catal. Commun. 129 (2019) 105723. [25] R. Tomer, P. Biswas, Reaction kinetics study and the estimation of thermodynamic parameters for the conversion of glucose to 5-hydroxymethylfurfural (5-HMF) in a dimethyl sulfoxide (DMSO) medium in the presence of a mesoporous TiO2 catalyst, J. Taiwan Inst. Chem. Eng. 136 (2022) 104427. [26] A. Herbst, C. Janiak, Selective glucose conversion to 5-hydroxymethylfurfural (5-HMF) instead of levulinic acid with MIL-101Cr MOF-derivatives, New J. Chem. 40 (9) (2016) 7958-7967. [27] C.X. Lu, Y.Z. Zhou, L.Z. Li, H.W. Chen, L.S. Yan, Conversion of glucose into 5-hydroxymethylfurfural catalyzed by Cr-and Fe-containing mixed-metal metal-organic frameworks, Fuel 333 (2023) 126415. [28] J.J. Wang, J.W. Ren, X.H. Liu, J.X. Xi, Q.N. Xia, Y.H. Zu, G.Z. Lu, Y.Q. Wang, Direct conversion of carbohydrates to 5-hydroxymethylfurfural using Sn-Mont catalyst, Green Chem. 14 (9) (2012) 2506-2512. [29] J.P. Lorenti, E. Scolari, E.M. Albuquerque, M.A. Fraga, J.M.R. Gallo, Tailoring Sn-SBA-15 properties for catalytic isomerization of glucose, Appl. Catal., A-Gen. 581 (2019) 37-42. [30] J. Rohilla, S. Thakur, K. Kumar, R. Singh, V. Kaur, Nanopalladium-decorated Sn-Na MOF catalyst for upgrading biosugars to 5-hydroxymethylfurfural in an aqueous medium, ACS Appl. Nano Mater. 6 (13) (2023) 12063-12072. [31] G. Qiu, B.H. Chen, C.P. Huang, N. Liu, X.L. Sun, Tin-modified ionic liquid polymer: A novel and efficient catalyst for synthesis of 5-hydroxymethylfurfural from glucose, Fuel 268 (2020) 117136. [32] E. Nikolla, Y. Roman-Leshkov, M. Moliner, M.E. Davis, "One-pot" synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-Beta zeolite, ACS Catal. 1 (4) (2011) 408-410. [33] Q. Xu, Z. Zhu, Y.K. Tian, J. Deng, J. Shi, Y. Fu, Sn-MCM-41 as efficient catalyst for the conversion of glucose into 5-hydroxymethylfurfural in ionic liquids, BioRes. 9 (1) (2014) 303-315. [34] G. Qiu, B.H. Chen, N. Liu, C.P. Huang, Hafnium-tin composite oxides as effective synergistic catalysts for the conversion of glucose into 5-hydroxymethylfurfural, Fuel 311 (2022) 122628. [35] Q.D. Hou, M.N. Zhen, L. Liu, Y. Chen, F. Huang, S.Q. Zhang, W.Z. Li, M.T. Ju, Tin phosphate as a heterogeneous catalyst for efficient dehydration of glucose into 5-hydroxymethylfurfural in ionic liquid, Appl. Catal., B-Environ. 224 (2018) 183-193. [36] K. Wang, A. Rezayan, L.Q. Si, Y.S. Zhang, R.F. Nie, T.L. Lu, J.S. Wang, C.B. Xu, Highly efficient 5-hydroxymethylfurfural production from glucose over bifunctional SnOx/C catalyst, ACS Sustain. Chem. Eng. 9 (34) (2021) 11351-11360. [37] H.C. Ma, K. Teng, Y.H. Fu, Y. Song, Y.W. Wang, X.L. Dong, Synthesis of visible-light responsive Sn-SnO2/C photocatalyst by simple carbothermal reduction, Energy Environ. Sci. 4 (8) (2011) 3067-3074. [38] Y.J. Hong, Y.C. Kang, One-pot synthesis of core-shell-structured tin oxide-carbon composite powders by spray pyrolysis for use as anode materials in Li-ion batteries, Carbon 88 (2015) 262-269. [39] Y. Kim, Y. Yoon, D. Shin, Fabrication of Sn/SnO2 composite powder for anode of lithium ion battery by aerosol flame deposition, J. Anal. Appl. Pyrolysis 85 (1-2) (2009) 557-560. [40] M.Z. Iqbal, F.P. Wang, T. Feng, H.L. Zhao, M.Y. Rafique, R.U. Din, M.H. Farooq, Q.U. Javed, D.F. Khan, Facile synthesis of self-assembled SnO nano-square sheets and hydrogen absorption characteristics, Mater. Res. Bull. 47 (11) (2012) 3902-3907. [41] X. Zhao, L. Huang, S. Namuangruk, H. Hu, X.N. Hu, L.Y. Shi, D.S. Zhang, Morphology-dependent performance of Zr-CeVO4/TiO2 for selective catalytic reduction of NO with NH3, Catal. Sci. Technol. 6 (14) (2016) 5543-5553. [42] C. Zhang, C.H. Jia, Y. Cao, Y. Yao, S.Q. Xie, S.C. Zhang, H.F. Lin, Water-assisted selective hydrodeoxygenation of phenol to benzene over the Ru composite catalyst in the biphasic process, Green Chem. 21 (7) (2019) 1668-1679. [43] M. Thommes, C. Schlumberger, Characterization of nanoporous materials, Annu. Rev. Chem. Biomol. Eng. 12 (2021) 137-162. [44] L. Li, T.I. Koranyi, B.F. Sels, P.P. Pescarmona, Highly-efficient conversion of glycerol to solketal over heterogeneous Lewis acid catalysts, Green Chem. 14 (6) (2012) 1611-1619. [45] F.F. Wang, J. Liu, H. Li, C.L. Liu, R.Z. Yang, W.S. Dong, Conversion of cellulose to lactic acid catalyzed by erbium-exchanged montmorillonite K10, Green Chem. 17 (4) (2015) 2455-2463. [46] Y.C. Zhang, X. Yan, B.Q. Niu, J.Q. Zhao, A study on the conversion of glycerol to pyridine bases over Cu/HZSM-5 catalysts, Green Chem. 18 (10) (2016) 3139-3151. [47] L. Atanda, A. Shrotri, S. Mukundan, Q. Ma, M. Konarova, J. Beltramini, Direct production of 5-hydroxymethylfurfural via catalytic conversion of simple and complex sugars over phosphated TiO2, ChemSusChem 8 (17) (2015) 2907-2916. [48] L. Li, F. Shen, R.L. Smith, X. Qi, Quantitative chemocatalytic production of lactic acid from glucose under anaerobic conditions at room temperature, Green Chem. 19 (1) (2016) 76-81. [49] M. Li, X.J. Yu, C.S. Zhou, A.A. Yagoub, Q.H. Ji, L. Chen, Construction of an integrated platform for 5-HMF production and separation based on ionic liquid aqueous two-phase system, J. Mol. Liq. 313 (2020) 113529. [50] X.C. Li, K.H. Peng, Q.N. Xia, X.H. Liu, Y.Q. Wang, Efficient conversion of cellulose into 5-hydroxymethylfurfural over niobia/carbon composites, Chem. Eng. J. 332 (2018) 528-536. [51] S.Q. Xu, X.Y. Xing, H. Wu, X. Shi, Z.Q. Zhang, H. Gao, The Hydrothermally Stable NbW-SBA-15 as Highly Efficient Catalysts for the Conversion of Glucose into 5-Hydroxymethylfurfural, Catal. Lett. 152 (11) (2022) 3427-3436. |