[1] R.Y. Zheng, Z.C. Liu, Y.D. Wang, Z.K. Xie, M.Y. He, The future of green energy and chemicals: Rational design of catalysis routes, Joule 6 (6) (2022) 1148-1159. [2] T. Zhang, Taking on all of the biomass for conversion, Science 367 (6484) (2020) 1305-1306. [3] C.R. Yang, J.X. Qin, S.X. Sun, D.M. Gao, Y. Fang, G. Chen, C.J. Tian, C.J. Bao, S.T. Zhang, Progress in developing methods for lignin depolymerization and elucidating the associated mechanisms, Eur. Polym. J. 210 (2024) 112995. [4] W. Deng, Y. Feng, J. Fu, H. Guo, Y. Guo, B. Han, Z. Jiang, L. Kong, C. Li, H. Liu, P.T.T. Nguyen, P. Ren, F. Wang, S. Wang, Y. Wang, Y. Wang, S.S. Wong, K. Yan, N. Yan, X. Yang, Y. Zhang, Z. Zhang, X. Zeng, H. Zhou, Catalytic conversion of lignocellulosic biomass into chemicals and fuels, Green Energy Environ. 8 (1) (2022) 10-114. [5] M. Gholizadeh, X. Hu, Progress in understanding the coking behavior of typical catalysts in the catalytic pyrolysis of biomass, Sustainable Energy Fuels 6 (9) (2022) 2113-2148. [6] Q.Y. Liu, T. Zhang, Y.H. Liao, C.L. Cai, J. Tan, T.J. Wang, S.B. Qiu, M.H. He, L.L. Ma, Production of C5/C6 sugar alcohols by hydrolytic hydrogenation of raw lignocellulosic biomass over Zr based solid acids combined with Ru/C, ACS Sustainable Chem. Eng. 5 (7) (2017) 5940-5950. [7] Y.T. Zhu, Y.H. Liao, L.Y. Lu, W. Lv, J. Liu, X.B. Song, J.C. Wu, L. Li, C.G. Wang, L.L. Ma, B.F. Sels, Oxidative catalytic fractionation of lignocellulose to high-yield aromatic aldehyde monomers and pure cellulose, ACS Catal. 13 (12) (2023) 7929-7941. [8] W.Z. He, G.M. Li, L.Z. Kong, H. Wang, J.W. Huang, J.C. Xu, Application of hydrothermal reaction in resource recovery of organic wastes, Resour. Conserv. Recycl. 52 (5) (2008) 691-699. [9] K.I. Galkin, V.P. Ananikov, When will 5-hydroxymethylfurfural, the “sleeping giant” of sustainable chemistry, awaken? ChemSusChem 12 (13) (2019) 2976-2982. [10] L. Li, H. Yue, S. Zhang, Y. Huang, W. Zhang, P. Wu, Y. Ji, F. Huo, Solving the water hypersensitive challenge of sulfated solid superacid in acid-catalyzed reactions, ACS Appl Mater Interfaces 11 (10) (2019) 9919-9924. [11] L. Zhu, X. Fu, Y. Hu, C. Hu, Controlling the reaction networks for efficient conversion of glucose into 5-hydroxymethylfurfural, ChemSusChem 13 (18) (2020) 4812-4832. [12] Z.Y. Zhou, D.H. Liu, X.B. Zhao, Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose, Renew. Sustain. Energy Rev. 146 (2021) 111169. [13] B.W. Yu, G.Z. Fan, S.J. Zhao, Y.C. Lu, Q. He, Q.P. Cheng, J.T. Yan, B. Chai, G.S. Song, Simultaneous isolation of cellulose and lignin from wheat straw and catalytic conversion to valuable chemical products, Appl. Biol. Chem. 64 (1) (2021) 15. [14] P. Wanninayake, M. Rathnayake, D. Thushara, S. Gunawardena, Conversion of rice straw into 5-hydroxymethylfurfural: Review and comparative process evaluation, Biomass Convers. Biorefin. 12 (3) (2022) 1013-1047. [15] Y.N. Wei, Y.L. Zhang, B. Li, W. Guan, C.H. Yan, X. Li, Y.S. Yan, Facile synthesis of metal-organic frameworks embedded in interconnected macroporous polymer as a dual acid-base bifunctional catalyst for efficient conversion of cellulose to 5-hydroxymethylfurfural, Chin. J. Chem. Eng. 44 (2022) 169-181. [16] C.J. Wei, G. Liu, Y.J. Xie, Z.Y. Sun, C. Liu, F. Song, H.Y. Cui, Cellulose dissolution and conversion into 5-hydroxymethylfurfural in mixed molten salt hydrate, Cellulose 30 (2) (2023) 801-813. [17] M. Elsakhawy, M. Hassan, Physical and mechanical properties of microcrystalline cellulose prepared from agricultural residues, Carbohydr. Polym. 67 (1) (2007) 1-10. [18] Q.D. Hou, C. Bai, X.Y. Bai, H.L. Qian, Y.F. Nie, T.L. Xia, R.T. Lai, G.J. Yu, M.L.U. Rehman, M.T. Ju, Roles of ball milling pretreatment and titanyl sulfate in the synthesis of 5-hydroxymethylfurfural from cellulose, ACS Sustainable Chem. Eng. 10 (3) (2022) 1205-1213. [19] A. Rezayan, K. Wang, R.F. Nie, J.S. Wang, T.L. Lu, Y.S. Zhang, C.C. Xu, Eco-friendly preparation of phosphated Gallia: A tunable dual-acidic catalyst for the efficient 5-hydroxymethylfurfural production from carbohydrates, J. Catal. 414 (2022) 186-198. [20] Q.D. Hou, C. Bai, X.Y. Bai, H.L. Qian, Y.F. Nie, T.L. Xia, R.T. Lai, G.J. Yu, M.L.U. Rehman, M.T. Ju, Roles of ball milling pretreatment and titanyl sulfate in the synthesis of 5-hydroxymethylfurfural from cellulose, ACS Sustainable Chem. Eng. 10 (3) (2022) 1205-1213. [21] X.Y. Zhang, D. Zhang, Z. Sun, L.F. Xue, X.H. Wang, Z.J. Jiang, Highly efficient preparation of HMF from cellulose using temperature-responsive heteropolyacid catalysts in cascade reaction, Appl. Catal. B Environ. 196 (2016) 50-56. [22] Q. Wu, G.Y. Zhang, M.M. Gao, S.S. Cao, L. Li, S.W. Liu, C.X. Xie, L. Huang, S.T. Yu, A.J. Ragauskas, Clean production of 5-hydroxymethylfurfural from cellulose using a hydrothermal/biomass-based carbon catalyst, J. Clean. Prod. 213 (2019) 1096-1102. [23] S. Liu, W. Zheng, X. Wen, Z. Fang, H. Li, C. Li, J. Fang, Molecular design and experimental study of cellulose conversion to 5-hydroxymethylfurfural catalyzed by different ratios of Broensted/Lewis acid ionic liquids, Carbohydr Polym 278 (2022) 118936. [24] W. Sun, X. Wei, W. Li, X. Zhang, H. Wei, S. Liu, L. Ma, Numerical studies on cellulose hydrolysis in organic-liquid-solid phase systems with a liquid membrane catalysis model, ACS Omega 7 (2) (2022) 2286-2303. [25] Y. Zhou, Y.C. Shao, D. Zhou, Y.J. Meng, D.S. Shen, Y.Y. Long, Effect of mechano-chemical pretreatment on valorizing plant waste for 5-hydroxymethylfurfural under microwave hydrothermal treatment, Renew. Energy 180 (2021) 536-543. [26] F. Shen, S. Sun, X. Zhang, J.R. Yang, M. Qiu, X.H. Qi, Mechanochemical-assisted production of 5-hydroxymethylfurfural from high concentration of cellulose, Cellulose 27 (6) (2020) 3013-3023. [27] X.L. Zhang, W.H. Yang, W. Blasiak, Modeling study of woody biomass: Interactions of cellulose, hemicellulose, and lignin, Energy Fuels 25 (10) (2011) 4786-4795. [28] Y. Zhao, U. Shakeel, M. Saif Ur Rehman, H.Q. Li, X. Xu, J. Xu, Lignin-carbohydrate complexes (LCCs) and its role in biorefinery, J. Clean. Prod. 253 (2020) 120076. [29] C. Jin, M. Yang, S. E, J. Liu, S. Zhang, X. Zhang, K. Sheng, X. Zhang, Corn stover valorization by one-step formic acid fractionation and formylation for 5-hydroxymethylfurfural and high guaiacyl lignin production, Bioresour Technol 299 (2020) 122586. [30] X.B. Zhao, K.K. Cheng, D.H. Liu, Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis, Appl. Microbiol. Biotechnol. 82 (5) (2009) 815-827. [31] Q. Wang, X.S. Zhuang, W. Wang, X.S. Tan, Q. Yu, W. Qi, Z.H. Yuan, Rapid and simultaneous production of furfural and cellulose-rich residue from sugarcane bagasse using a pressurized phosphoric acid-acetone-water system, Chem. Eng. J. 334 (2018) 698-706. [32] Y.P. Luo, Z.C. Zhao, B. Jiang, M. Wei, Z. Zhang, L.S. Zeng, J.H. Clark, J.J. Fan, An integrated process for the valorization of corn stover promoted by NaCl in a GVL/H2O system, Green Chem. 24 (4) (2022) 1515-1526. [33] G. Dedes, A. Karnaouri, A.A. Marianou, K.G. Kalogiannis, C.M. Michailof, A.A. Lappas, E. Topakas, Conversion of organosolv pretreated hardwood biomass into 5-hydroxymethylfurfural (HMF) by combining enzymatic hydrolysis and isomerization with homogeneous catalysis, Biotechnol Biofuels 14 (1) (2021) 172. [34] P. Kumar, D.M. Barrett, M.J. Delwiche, P. Stroeve, Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production, Ind. Eng. Chem. Res. 48 (8) (2009) 3713-3729. [35] F.P. Yao, F. Shen, X. Wan, C.W. Hu, High yield and high concentration glucose production from corncob residues after tetrahydrofuran + H2O co-solvent pretreatment and followed by enzymatic hydrolysis, Renew. Sustain. Energy Rev. 132 (2020) 110107. [36] S. Ma, Z. Li, J. Sperry, X. Tang, Y. Sun, L. Lin, J. Liu, X.H. Zeng, CAOSA-extracted lignin improves enzymatic hydrolysis of cellulose, Green Energy Environ. 5(2023): https://doi.org/10.1016/j.gee.2023.05.009. [37] K. Karimi, M.J. Taherzadeh, A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity, Bioresour Technol 200 (2016) 1008-1018. [38] L. Segal, J.J. Creely, A.E. Martin Jr, C.M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer, Text. Res. J. 29 (10) (1959) 786-794. [39] W. Mo, K. Chen, X. Yang, F. Kong, J. Liu, B. Li, Elucidating the hornification mechanism of cellulosic fibers during the process of thermal drying, Carbohydr Polym 289 (2022) 119434. [40] L. Shuai, J. Luterbacher, Organic solvent effects in biomass conversion reactions, ChemSusChem 9 (2) (2016) 133-155. [41] A. Duereh, Y. Sato, R.L. Smith Jr, H. Inomata, Analysis of the cybotactic region of two renewable lactone-water mixed-solvent systems that exhibit synergistic kamlet-taft basicity, J. Phys. Chem. B 120 (19) (2016) 4467-4481. [42] Z.M. Xue, X.H. Zhao, R.C. Sun, T.C. Mu, Biomass-derived γ-valerolactone-based solvent systems for highly efficient dissolution of various lignins: dissolution behavior and mechanism study, ACS Sustainable Chem. Eng. 4 (7) (2016) 3864-3870. [43] Y.J. Chen, J.Q. Shan, Y.L. Cao, X. Shen, C.L. Tang, M. Li, W. Zhuang, C.J. Zhu, H.J. Ying, Mechanocatalytic depolymerization of hemicellulose to xylooligosaccharides: new insights into the influence of impregnation solvent, Ind. Crops Prod. 180 (2022) 114704. [44] J.V. Vermaas, M.F. Crowley, G.T. Beckham, Molecular lignin solubility and structure in organic solvents, ACS Sustainable Chem. Eng. 8 (48) (2020) 17839-17850. [45] F. Xu, J.M. Yu, T. Tesso, F. Dowell, D.H. Wang, Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review, Appl. Energy 104 (2013) 801-809. [46] Y. Zhong, K.B. Wang, Y.L. Liu, X. Wang, Preparation and characterization of Salix Psammophila cellulose and Mic-cellulose under the pretreatment of two kinds of acid, J. Phys.: Conf. Ser. 1605 (1) (2020) 012165. [47] P. Bock, P. Nousiainen, T. Elder, M. Blaukopf, H. Amer, R. Zirbs, A. Potthast, N. Gierlinger, Infrared and Raman spectra of lignin substructures: Dibenzodioxocin, J Raman Spectrosc 51 (3) (2020) 422-431. [48] M. Makarem, C.M. Lee, K. Kafle, S.X. Huang, I. Chae, H. Yang, J.D. Kubicki, S.H. Kim, Probing cellulose structures with vibrational spectroscopy, Cellulose 26 (1) (2019) 35-79. [49] H. Zhang, X. Liu, J. Li, Z. Jiang, C. Hu, Performances of several solvents on the cleavage of inter- and intramolecular linkages of lignin in corncob residue, ChemSusChem 11 (9) (2018) 1494-1504. [50] N.A. Chohan, G.S. Aruwajoye, Y. Sewsynker-Sukai, E.B. Gueguim Kana, Valorisation of potato peel wastes for bioethanol production using simultaneous saccharification and fermentation: process optimization and kinetic assessment, Renew. Energy 146 (2020) 1031-1040. [51] R.H. Newman, Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp, Cellulose 11 (1) (2004) 45-52. [52] Y. Liu, H.Q. Fu, W. Zhang, H.C. Liu, Effect of crystalline structure on the catalytic hydrolysis of cellulose in subcritical water, ACS Sustainable Chem. Eng. 10 (18) (2022) 5859-5866. [53] A. Al Ghatta, X.Y. Zhou, G. Casarano, J. Wilton-Ely, J. Hallett, Characterization and valorization of humins produced by HMF degradation in ionic liquids: A valuable carbonaceous material for antimony removal, ACS Sustain. Chem. & Eng. 9 (2021) 2212-2223. [54] R. Zhang, H. Gao, Y. Wang, B. He, J. Lu, W. Zhu, L. Peng, Y. Wang, Challenges and perspectives of green-like lignocellulose pretreatments selectable for low-cost biofuels and high-value bioproduction, Bioresour Technol 369 (2023) 128315. |