[1] A.P. Richards, D. Haycock, J. Frandsen, T.H. Fletcher, A review of coal heating value correlations with application to coal char, tar, and other fuels, Fuel 283(2021) 118942. [2] Z.H. Ma, S. Li, X.Q. Dong, M. Li, G.H. Liu, Z.Q. Liu, F.J. Liu, Z.M. Zong, X.S. Cong, X.Y. Wei, Recent advances in characterization technology for value-added utilization of coal tars, Fuel 334(2023) 126637. [3] H.Q. Sui, C. Tian, J.L. Chen, S. Fullmer, Z.C. Zhang, Characterization and separation of wood tar by full temperature range fractional distillation, Sep. Purif. Technol. 302(2022) 122098. [4] H.G. Li, C.Y. Tian, J.W. Lu, C. He, Vacuum fractional distillation of biocrude oil and the immobilization of harmful metal, Fuel 326(2022) 125013. [5] G. Bassil, I. Mokbel, J. Saab, R. Abou Naccoul, J. Jose, C. Goutaudier, Elimination of tar in biomass gasification process: Liquid-liquid equilibrium of ternary systems{water + solvent (p-xylene and methyl hexadecanoate) + model molecules of tar (thiophene, pyridine, naphthalene, phenathrene, and anthracene)}, J. Chem. Eng. Data 62(3) (2017) 1028-1035. [6] J.B. Zimmerman, P.T. Anastas, H.C. Erythropel, W. Leitner, Designing for a green chemistry future, Science 367(6476) (2020) 397-400. [7] H.J. Gai, L. Qiao, C.Y. Zhong, X.W. Zhang, M. Xiao, H.B. Song, A solvent based separation method for phenolic compounds from low-temperature coal tar, J. Clean. Prod. 223(Jun. 20) (2019) 1-11. [8] Y. Huang, J. Feng, C.H. Liang, P. Huang, X.W. Zhang, Q. Xie, W.Y. Li, Co-production of naphthenic oil and phenolic compounds from medium- and low-temperature coal tar, Ind. Eng. Chem. Res. 60(16) (2021) 5890-5902. [9] C.P. Ye, H. Zheng, T.T. Wu, M.M. Fan, J. Feng, W.Y. Li, Optimization of solvent crystallization process in obtaining high purity anthracene and carbazole from crude anthracene, AIChE. J. 60(1) (2014) 275-281. [10] C.P. Ye, X.X. Ding, W.Y. Li, T.T. Wu, M.M. Fan, J. Feng, Highly efficient solvent screening for separating carbazole from crude anthracene, Energy Fuels 30(4) (2016) 3529-3534. [11] P.Z. Bei, H.J. Liu, Y. Zhang, Y.J. Gao, Z.Q. Cai, Y.M. Chen, Preparation and characterization of polyimide membranes modified by a task-specific ionic liquid based on Schiff base for CO2/N2 separation, Environ. Sci. Pollut. Res. 28(1) (2021) 738-753. [12] H.Z. Dou, M. Xu, L.X. Yang, B.Y. Wang, A.P. Yu, L.H. Zhang, Z.W. Chen, Z.Y. Jiang, Efficient ethylene/ethane separation by zwitterionic deep eutectic solvent membranes, J. Membr. Sci. 666(2023) 121181. [13] K. Pang, Y.C. Hou, W.Z. Wu, W.J. Guo, W. Peng, K.N. Marsh, Efficient separation of phenols from oils via forming deep eutectic solvents, Green Chem. 14(9) (2012) 2398-2401. [14] W.J. Guo, Y.C. Hou, W.Z. Wu, S.H. Ren, S.D. Tian, K.N. Marsh, Separation of phenol from model oils with quaternary ammonium salts via forming deep eutectic solvents, Green Chem. 15(1) (2013) 226-229. [15] C.F. Yao, Y.C. Hou, S.H. Ren, W.Z. Wu, K. Zhang, Y.A. Ji, H. Liu, Efficient separation of phenol from model oils using environmentally benign quaternary ammonium-based zwitterions via forming deep eutectic solvents, Chem. Eng. J. 326(2017) 620-626. [16] C.F. Yao, Y.C. Hou, S.H. Ren, W.Z. Wu, Y.A. Ji, H. Liu, Sulfonate based zwitterions: A new class of extractants for separating phenols from oils with high efficiency via forming deep eutectic solvents, Fuel Process. Technol. 178(2018) 206-212. [17] Y.A. Ji, Y.C. Hou, S.H. Ren, C.F. Yao, W.Z. Wu, Separation of phenolic compounds from oil mixtures using environmentally benign biological reagents based on Broensted acid-Lewis base interaction, Fuel 239(2019) 926-934. [18] L. Yi, J. Feng, W.Y. Li, Z.Y. Luo, High-performance separation of phenolic compounds from coal-based liquid oil by deep eutectic solvents, ACS Sustain. Chem. Eng. 7(8) (2019) 7777-7783. [19] M.C. Ali, Q.W. Yang, A.A. Fine, W.B. Jin, Z.G. Zhang, H.B. Xing, Q.L. Ren, Efficient removal of both basic and non-basic nitrogen compounds from fuels by deep eutectic solvents, Green Chem. 18(1) (2016) 157-164. [20] L.Z. Zhang, D.M. Xu, J. Gao, S.X. Zhou, L.W. Zhao, Z.S. Zhang, Extraction and mechanism for the separation of neutral N-compounds from coal tar by ionic liquids, Fuel 194(2017) 27-35. [21] W.W. Yan, X.Y. Wei, M.X. Wang, Z.M. Zong, Overview: Effective separation of oxygen-, nitrogen-, and sulfur-containing aromatics in high-temperature coal tar by ionic liquids and deep eutectic solvents: Experimental and computational, Ind. Eng. Chem. Res. 61(13) (2022) 4481-4492. [22] L.L. Deng, W.Z. Sun, Z.J. Shi, W. Qian, Q. Su, L. Dong, H.Y. He, Z.X. Li, W.G. Cheng, Highly synergistic effect of ionic liquids and Zn-based catalysts for synthesis of cyclic carbonates from urea and diols, J. Mol. Liq. 316(2020) 113883. [23] H. Malik, H.W. Khan, M.U. Hassan Shah, M.I. Ahmad, I. Khan, A.A. Al-Kahtani, M. Sillanpaa, Screening of ionic liquids as green entrainers for ethanol water separation by extractive distillation: COSMO-RS prediction and aspen plus simulation, Chemosphere 311(Pt 2) (2023) 136901. [24] Q. Liu, Q. Liu, X.L. Zhang, Separation of m-cresol from model oil by pyridinium-based ionic liquids: COSMO-RS screening, experimental study, and process simulation, J. Environ. Chem. Eng. 10(6) (2022) 108874. [25] Q. Liu, X.L. Zhang, Highly efficient separation of phenolic compounds from low-temperature coal tar by composite extractants with low viscosity, J. Mol. Liq. 360(2022) 119417. [26] D.M. Xu, M. Zhang, J. Gao, L.Z. Zhang, S.X. Zhou, Y.L. Wang, Separation of heterocyclic nitrogen compounds from coal tar fractions via ionic liquids: COSMO-SAC screening and experimental study, Chem. Eng. Commun. 206(9) (2019) 1199-1217. [27] D. Zhao, C. Liu, Y.G. Wang, H.Y. Zhang, Ionic liquids design for efficient separation of anthracene and carbazole, Sep. Purif. Technol. 281(2022) 119892. [28] Y. Zhao, J. Tong, Investigation of the extraction ability and mechanism of environmentally friendly ionic liquids for phenol in the model oil, Fuel 341(2023) 127673. [29] W.W. Yan, Z.M. Zong, Z.X. Li, J. Li, G.H. Liu, Z.H. Ma, Y.Y. Zhang, M.L. Xu, F.J. Liu, X.Y. Wei, Effective separation and purification of nitrogen-containing aromatics from the light portion of a high-temperature coal tar using choline chloride and malonic acid: Experimental and molecular dynamics simulation, ACS Sustain. Chem. Eng. 8(25) (2020) 9464-9471. [30] J. Zhang, P.C. Chen, B.K. Yuan, W. Ji, Z.H. Cheng, X.H. Qiu, Real-space identification of intermolecular bonding with atomic force microscopy, Science 342(6158) (2013) 611-614. [31] K. Mamtani, K. Shahbaz, M.M. Farid, Deep eutectic solvents-Versatile chemicals in biodiesel production, Fuel 295(2021) 120604. [32] V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, K. Yin, A review of process fault detection and diagnosis: Part III: Process history based methods, Comput. Chem. Eng. 27(3) (2003) 327-346. [33] M. Diedenhofen, A. Klamt, COSMO-RS as a tool for property prediction of IL mixtures-A review, Fluid Phase Equilib. 294(1-2) (2010) 31-38. [34] H.Y. Cheng, J.S. Li, J.W. Wang, L.F. Chen, Z.W. Qi, Enhanced vitamin E extraction selectivity from deodorizer distillate by a biphasic system: A COSMO-RS and experimental study, ACS Sustain. Chem. Eng. 6(4) (2018) 5547-5554. [35] H.Y. Cheng, C.Y. Liu, J.J. Zhang, L.F. Chen, B.J. Zhang, Z.W. Qi, Screening deep eutectic solvents for extractive desulfurization of fuel based on COSMO-RS model, Chem. Eng. Process. Process. Intensif. 125(2018) 246-252. [36] Z. Song, X.T. Hu, Y.G. Zhou, T. Zhou, Z.W. Qi, K. Sundmacher, Rational design of double salt ionic liquids as extraction solvents: Separation of thiophene/n-octane as example, AIChE. J. 65(8) (2019) e16625. [37] Z. Salleh, I. Wazeer, S. Mulyono, L. El-blidi, M. Ali Hashim, M.K. Hadj-Kali, Efficient removal of benzene from cyclohexane-benzene mixtures using deep eutectic solvents-COSMO-RS screening and experimental validation, J. Chem. Thermodyn. 104(2017) 33-44. [38] W.Y. Li, W. Wang, H. Mu, W. Li, C.P. Ye, J. Feng, Analysis of light weight fractions of coal-based crude oil by gas chromatography combined with mass spectroscopy and flame ionization detection, Fuel 241(2019) 392-401. [39] A. Mehrkesh, A.T. Karunanithi, Life-cycle perspectives on aquatic ecotoxicity of common ionic liquids, Environ. Sci. Technol. 50(13) (2016) 6814-6821. [40] L. Yi, J. Feng, M. Gauthier, W.Y. Li, Effect of the addition of deep eutectic solvent to the anthracene separation, J. Mol. Liq. 339(2021) 116762. [41] B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, A. Horton, L. Adhikari, T. Zelovich, B.W. Doherty, B. Gurkan, E.J. Maginn, A. Ragauskas, M. Dadmun, T.A. Zawodzinski, G.A. Baker, M.E. Tuckerman, R.F. Savinell, J.R. Sangoro, Deep eutectic solvents: A review of fundamentals and applications, Chem. Rev. 121(3) (2021) 1232-1285. [42] Y.C. Hou, Y.H. Ren, W. Peng, S.H. Ren, W.Z. Wu, Separation of phenols from oil using imidazolium-based ionic liquids, Ind. Eng. Chem. Res. 52(50) (2013) 18071-18075. [43] H. Meng, C.T. Ge, N.N. Ren, W.Y. Ma, Y.Z. Lu, C.X. Li, Complex extraction of phenol and cresol from model coal tar with polyols, ethanol amines, and ionic liquids thereof, Ind. Eng. Chem. Res. 53(1) (2014) 355-362. [44] Z.Y. Li, R.P. Li, X.Q. Yuan, Y.C. Pei, Y.L. Zhao, H.Y. Wang, J.J. Wang, Anionic structural effect in liquid-liquid separation of phenol from model oil by choline carboxylate ionic liquids, Green Energy Environ. 4(2) (2019) 131-138. [45] P.Z. Bei, A. Rajendran, J. Feng, W.Y. Li, Anthracene separation from analogous polycyclic aromatic hydrocarbons using the naphthalene-based solvents, Fuel 335(2023) 127029. [46] L.L. Xie, A. Favre-Reguillon, S. Pellet-Rostaing, X.X. Wang, X.Z. Fu, J. Estager, M. Vrinat, M. Lemaire, Selective extraction and identification of neutral nitrogen compounds contained in straight-run diesel feed using chloride based ionic liquid, Ind. Eng. Chem. Res. 47(22) (2008) 8801-8807. [47] L.L. Xie, A. Favre-Reguillon, X.X. Wang, X.Z. Fu, S. Pellet-Rostaing, G. Toussaint, C. Geantet, M. Vrinat, M. Lemaire, Selective extraction of neutral nitrogen compounds found in diesel feed by 1-butyl-3-methyl-imidazolium chloride, Green Chem. 10(5) (2008) 524-531. |