[1] I. Amghizar, L.A. Vandewalle, K.M. Van Geem, G.B. Marin, New trends in olefin production, Engineering 3(2) (2017) 171-178. [2] T. Ren, M. Patel, K. Blok, Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes, Energy 31(4) (2006) 425-451. [3] V.P. Haribal, Y. Chen, L. Neal, F.X. Li, Intensification of ethylene production from naphtha via a redox oxy-cracking scheme: Process simulations and analysis, Engineering 4(5) (2018) 714-721. [4] A. Toghan, R. Arrigo, A. Knop-Gericke, R. Imbihl, Ambient pressure X-ray photoelectron spectroscopy during electrochemical promotion of ethylene oxidation over a bimetallic Pt-Ag/YSZ catalyst, J. Catal. 296(2012) 99-109. [5] M.M. Bhasin, Is true ethane oxydehydrogenation feasible? Top. Catal. 23(1) (2003) 145-149. [6] E.M. Thorsteinson, T.P. Wilson, F.G. Young, P.H. Kasai, The oxidative dehydrogenation of ethane over catalysts containing mixed oxides of molybdenum and vanadium, J. Catal. 52(1) (1978) 116-132. [7] Y.L. Zhou, J. Lin, L. Li, M. Tian, X.Y. Li, X.L. Pan, Y. Chen, X.D. Wang, Improving the selectivity of Ni-Al mixed oxides with isolated oxygen species for oxidative dehydrogenation of ethane with nitrous oxide, J. Catal. 377(2019) 438-448. [8] M. Hurtado Cotillo, D. Unsihuay, C.E. Santolalla-Vargas, A. Paredes Doig, R. Sun Kou, G. Picasso, Catalysts based on Ni-Fe oxides supported on γ-Al2O3 for the oxidative dehydrogenation of ethane, Catal. Today 356(2020) 312-321. [9] P.B. Radstake, M. Roenning, A. Holmen, Influence of H2 on the oxygen-assisted dehydrogenation of ethane over Al2O3-supported Pt-Sn catalysts, Catal. Lett. 148(4) (2018) 1055-1066. [10] T.Q. Lei, Y.H. Cheng, C.X. Miao, W.M. Hua, Y.H. Yue, Z. Gao, Silica-doped TiO2 as support of gallium oxide for dehydrogenation of ethane with CO2, Fuel Process. Technol. 177(2018) 246-254. [11] C.C. Liao, C.C. Chang, Y. Choi, M.K. Tsai, Ethane oxidative dehydrogenation mechanism on MoO3(010) surface: A first-principle study using on-site Coulomb correction, Surf. Sci. 674(2018) 45-50. [12] J.C. Vedrine, Metal oxides in heterogeneous oxidation catalysis: State of the art and challenges for a more sustainable world, ChemSusChem 12(3) (2019) 577-588. [13] S.V. Mikhailovskii, N.A. Zhilyaeva, A.A. Obletsova, M.M. Ermilova, N.V. Orekhova, A.A. Malygin, A.B. Yaroslavtsev, Effect of the composition of (Mo, Nb, V, Ti)/γ-Al2O3 surface oxide structures on the oxidative dehydrogenation of ethane to ethylene, Russ. J. Appl. Chem. 89(1) (2016) 34-39. [14] A.S.H. Kumar, K. Upendar, A. Qiao, P.S.N. Rao, N. Lingaiah, V.N. Kalevaru, A. Martin, C. Sailu, P.S.S. Prasad, Selective oxidative dehydrogenation of ethane over MoO3/V2O5-Al2O3 catalysts: Heteropolymolybdate as a precursor for MoO3, Catal. Commun. 33(2013) 76-79. [15] K. Karim, A. Mamedov, M.H. Al-Hazmi, N. Al-Andis, Oxidative dehydrogenation of ethane over movmnw oxide catalysts, React. Kinet. Catal. Lett. 80(1) (2003) 3-11. [16] D. Delgado, R. Sanchis, B. Solsona, P. Concepcion, J.M. Lopez Nieto, Influence of the nature of the promoter in NiO catalysts on the selectivity to olefin during the oxidative dehydrogenation of propane and ethane, Top. Catal. 63(19) (2020) 1731-1742. [17] J.M. Lopez Nieto, P. Botella, M.I. Vazquez, A. Dejoz, The selective oxidative dehydrogenation of ethane over hydrothermally synthesised MoVTeNb catalysts, Chem. Commun. (17) (2002) 1906-1907. [18] C.P. Kumar, S. Gaab, T.E. Muller, J.A. Lercher, Oxidative dehydrogenation of light alkanes on supported molten alkali metal chloride catalysts, Top. Catal. 50(1) (2008) 156-167. [19] B. Tope, Y.Z. Zhu, J.A. Lercher, Oxidative dehydrogenation of ethane over Dy2O3/MgO supported LiCl containing eutectic chloride catalysts, Catal. Today 123(1-4) (2007) 113-121. [20] B. Sarkar, R. Goyal, L.N. Sivakumar Konathala, C. Pendem, T. Sasaki, R. Bal, MoO3 nanoclusters decorated on TiO2 nanorods for oxidative dehydrogenation of ethane to ethylene, Appl. Catal. B Environ. 217(2017) 637-649. [21] V.P. Haribal, L.M. Neal, F.X. Li, Oxidative dehydrogenation of ethane under a cyclic redox scheme-Process simulations and analysis, Energy 119(2017) 1024-1035. [22] Y.F. Gao, L.M. Neal, F.X. Li, Li-promoted LaxSr2-xFeO4-δcore-shell redox catalysts for oxidative dehydrogenation of ethane under a cyclic redox scheme, ACS Catal. 6(11) (2016) 7293-7302. [23] S. Yusuf, L.M. Neal, F.X. Li, Effect of promoters on manganese-containing mixed metal oxides for oxidative dehydrogenation of ethane via a cyclic redox scheme, ACS Catal. 7(8) (2017) 5163-5173. [24] Y.F. Gao, L. Neal, D. Ding, W. Wu, C. Baroi, A.M. Gaffney, F.X. Li, Recent advances in intensified ethylene production-a review, ACS Catal. 9(9) (2019) 8592-8621. [25] X.H. Zhang, C.L. Pei, X. Chang, S. Chen, R. Liu, Z.J. Zhao, R.T. Mu, J.L. Gong, FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting, J. Am. Chem. Soc. 142(26) (2020) 11540-11549. [26] N. Galinsky, M. Sendi, L. Bowers, F.X. Li, CaMn1-xBxO3-δ (B = Al, V, Fe, Co, and Ni) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU), Appl. Energy 174(2016) 80-87. [27] N. Galinsky, A. Mishra, J. Zhang, F.X. Li, Ca1-a MnO3(a = Sr and Ba) perovskite based oxygen carriers for chemical looping with oxygen uncoupling (CLOU), Appl. Energy 157(2015) 358-367. [28] T. Mattisson, Materials for chemical-looping with oxygen uncoupling, ISRN Chem. Eng. 2013(2013) 526375. [29] A. Shafiefarhood, A. Stewart, F.X. Li, Iron-containing mixed-oxide composites as oxygen carriers for Chemical Looping with Oxygen Uncoupling (CLOU), Fuel 139(2015) 1-10. [30] M. Arjmand, A. Hedayati, A.M. Azad, H. Leion, M. Ryden, T. Mattisson, CaxLa1-xMn1-yMyO3-δ (M = Mg, Ti, Fe, or Cu) as oxygen carriers for chemical-looping with oxygen uncoupling (CLOU), Energy Fuels 27(8) (2013) 4097-4107. [31] P. Hallberg, D.Z. Jing, M. Ryden, T. Mattisson, A. Lyngfelt, Chemical looping combustion and chemical looping with oxygen uncoupling experiments in a batch reactor using spray-dried CaMn1-xMxO3-δ (M = Ti, Fe, Mg) particles as oxygen carriers, Energy Fuels 27(3) (2013) 1473-1481. [32] R.B. Dudek, Y.F. Gao, J.S. Zhang, F.X. Li, Manganese-containing redox catalysts for selective hydrogen combustion under a cyclic redox scheme, AlChE. J. 64(8) (2018) 3141-3150. [33] Y.F. Gao, S. Wang, F. Hao, Z.J. Dai, F.X. Li, Zeolite-perovskite composites as effective redox catalysts for autothermal cracking of n-hexane, ACS Sustainable Chem. Eng. 8(38) (2020) 14268-14273. [34] R.B. Dudek, X. Tian, M. Blivin, L.M. Neal, H.B. Zhao, F.X. Li, Perovskite oxides for redox oxidative cracking of n-hexane under a cyclic redox scheme, Appl. Catal. B Environ. 246(2019) 30-40. [35] F. Hao, Y.F. Gao, L. Neal, R.B. Dudek, W.Y. Li, C. Chung, B. Guan, P.L. Liu, X.B. Liu, F.X. Li, Sodium tungstate-promoted CaMnO3 as an effective, phase-transition redox catalyst for redox oxidative cracking of cyclohexane, J. Catal. 385(2020) 213-223. [36] Y. Tian, R.B. Dudek, P.R. Westmoreland, F.X. Li, Effect of sodium tungstate promoter on the reduction kinetics of CaMn0.9Fe0.1O3 for chemical looping-oxidative dehydrogenation of ethane, Chem. Eng. J. 398(2020) 125583. [37] L. Brody, L. Neal, V. Haribal, F.X. Li, Ethane to liquids via a chemical looping approach-Redox catalyst demonstration and process analysis, Chem. Eng. J. 417(2021) 128886. [38] M.H. Yuan, W.J. Dong, L.L. Wei, Q. Liu, Y.J. Meng, X.Y. Wang, B.Y. Wang, B. Zhu, Stability study of SOFC using layered perovskite oxide La1.85Sr0.15CuO4 mixed with ionic conductor as membrane, Electrochim. Acta 332(2020) 135487. [39] P. Rocha-Rodrigues, S.S.M. Santos, G.N.P. Oliveira, T. Leal, I.P. Miranda, A.M. dos Santos, J.G. Correia, L.V.C. Assali, H.M. Petrilli, J.P. Araujo, A.M.L. Lopes, Ca2MnO4 structural path: Following the negative thermal expansion at the local scale, Phys. Rev. B 102(10) (2020) 104115. [40] C. Autret, C. Martin, M. Hervieu, R. Retoux, B. Raveau, G. Andre, F. Bouree, Structural investigation of Ca2MnO4 by neutron powder diffraction and electron microscopy, J. Solid State Chem. 177(6) (2004) 2044-2052. [41] C. Ablitt, H. McCay, S. Craddock, L. Cooper, E. Reynolds, A.A. Mostofi, N.C. Bristowe, C.A. Murray, M.S. Senn, Tolerance factor control of uniaxial negative thermal expansion in a layered perovskite, Chem. Mater. 32(1) (2020) 605-610. [42] W.X. Ding, K. Zhao, S.C. Jiang, Z.L. Zhao, Y. Cao, F. He, Alkali-metal enhanced LaMnO3 perovskite oxides for chemical looping oxidative dehydrogenation of ethane, Appl. Catal. A Gen. 609(2021) 117910. [43] S. Yusuf, V. Haribal, D. Jackson, L. Neal, F.X. Li, Mixed iron-manganese oxides as redox catalysts for chemical looping-oxidative dehydrogenation of ethane with tailorable heat of reactions, Appl. Catal. B Environ. 257(2019) 117885. [44] M. Ali, Z.W. Liao, Y. Yang, J.Y. Sun, B.B. Jiang, J.D. Wang, Y.R. Yang, Modeling and optimization of ethane steam cracking process in an industrial tubular reactor with improved reaction scheme, CHINA PET PROCESS PE 22(2020) 117-125. [45] Y.F. Gao, X.J. Wang, J.C. Liu, C.D. Huang, K. Zhao, Z.L. Zhao, X.D. Wang, F.X. Li, A molten carbonate shell modified perovskite redox catalyst for anaerobic oxidative dehydrogenation of ethane, Sci. Adv. 6(17) (2020) eaaz9339. [46] Y.J. Yang, J. Liu, Z. Wang, Y. Long, J.Y. Ding, Interface reaction activity of recyclable and regenerable Cu-Mn spinel-type sorbent for Hg0 capture from flue gas, Chem. Eng. J. 372(2019) 697-707. [47] X. Bai, R. He, A.J. Wei, X.H. Li, L.H. Zhang, Z.F. Liu, A Co-Modified strategy for enhanced structural stability and long cycling life of Ni-Rich LiNi0.8Co0.1Mn0.1O2 cathode material, J. Alloys Compd. 857(2021) 157877. [48] Y.J. Luo, D.F. Lin, Y.B. Zheng, X.S. Feng, Q.H. Chen, K. Zhang, X.Y. Wang, L.L. Jiang, MnO2 nanoparticles encapsuled in spheres of Ce-Mn solid solution: Efficient catalyst and good water tolerance for low-temperature toluene oxidation, Appl. Surf. Sci. 504(2020) 144481. [49] X.J. Zhang, J.G. Zhao, Z.X. Song, W. Liu, H. Zhao, M. Zhao, Y. Xing, Z.A. Ma, H.X. Du, The catalytic oxidation performance of toluene over the Ce-Mn-Ox catalysts: Effect of synthetic routes, J. Colloid Interface Sci. 562(2020) 170-181. [50] B. Guan, H. Lin, L. Zhu, B. Tian, Z. Huang, Effect of ignition temperature for combustion synthesis on the selective catalytic reduction of NOx with NH3 over Ti0.9Ce0.05V0.05O2-δ nanocomposites catalysts prepared by solution combustion route, Chem. Eng. J. 181-182(2012) 307-322. [51] Z.Z. Huang, Y.H. Wei, Z.X. Song, J.W. Luo, Y.L. Mao, J.Q. Gao, X.J. Zhang, C. Niu, H.Y. Kang, Z.D. Wang, Three-dimensional (3D) hierarchical Mn2O3 catalysts with the highly efficient purification of benzene combustion, Sep. Purif. Technol. 255(2021) 117633. [52] E. Heracleous, A.A. Lemonidou, Ni-Nb-O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part II: Mechanistic aspects and kinetic modeling, J. Catal. 237(1) (2006) 175-189. [53] J. Kim, J.E. Lee, H.W. Lee, J.K. Jeon, J. Song, S.C. Jung, Y.F. Tsang, Y.K. Park, Catalytic ozonation of toluene using Mn-M bimetallic HZSM-5(M: Fe, Cu, Ru, Ag) catalysts at room temperature, J. Hazard. Mater. 397(2020) 122577. [54] Y.P. Zhang, P. Wu, G.B. Li, K. Zhuang, K. Shen, S. Wang, T.J. Huang, Improved activity of Ho-modified Mn/Ti catalysts for the selective catalytic reduction of NO with NH3, Environ. Sci. Pollut. Res. Int. 27(21) (2020) 26954-26964. [55] J. Chen, X. Chen, D.X. Yan, M.Z. Jiang, W.J. Xu, H. Yu, H.P. Jia, A facile strategy of enhancing interaction between cerium and manganese oxides for catalytic removal of gaseous organic contaminants, Appl. Catal. B Environ. 250(2019) 396-407. |