[1] L. Zeng, Z. Cheng, J.A. Fan, L.S. Fan, J.L. Gong, Metal oxide redox chemistry for chemical looping processes, Nat. Rev. Chem. 2 (11) (2018) 349–364. [2] T.M. Gür, Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies, Prog. Energy Combust. Sci. 89 (2022) 100965. [3] J.J. Huang, W. Liu, W.T. Hu, I. Metcalfe, Y.H. Yang, B. Liu, Phase interactions in Ni-Cu-Al2O3 mixed oxide oxygen carriers for chemical looping applications, Appl. Energy 236 (2019) 635–647. [4] Y.Y. Chen, M. Li, Z.W. Li, F. Liu, G.Q. Song, S. Kawi, Efficient syngas production via CO2 reforming and electroreduction reactions through catalyst design, Energy Convers. Manag. 265 (2022) 115744. [5] Z.W. Li, Q. Lin, M. Li, J.X. Cao, F. Liu, H.Y. Pan, Z.G. Wang, S. Kawi, Recent advances in process and catalyst for CO2 reforming of methane, Renew. Sustain. Energy Rev. 134 (2020) 110312. [6] Y.L. Wang, P. Hu, J. Yang, Y.A. Zhu, D. Chen, C-H bond activation in light alkanes: A theoretical perspective, Chem. Soc. Rev. 50 (7) (2021) 4299–4358. [7] J.W. Hu, V.V. Galvita, H. Poelman, Z.G. Wang, G.B. Marin, S. Kawi, Coupling CO2 utilization and NO reduction in chemical looping manner by surface carbon, Appl. Catal. B 297 (2021) 120472. [8] Y. Kim, H.S. Lim, M. Lee, J.W. Lee, Ni-Fe-Al mixed oxide for combined dry reforming and decomposition of methane with CO2 utilization, Catal. Today 368 (2021) 86–95. [9] Y.L. Zhao, B. Jin, X. Luo, Z.W. Liang, Thermodynamic evaluation and experimental investigation of CaO-assisted Fe-based chemical looping reforming process for syngas production, Appl. Energy 288 (2021) 116614. [10] Y. Kim, H.S. Lim, H.S. Kim, M. Lee, J.W. Lee, D. Kang, Carbon dioxide splitting and hydrogen production using a chemical looping concept: A review, J. CO2 Util. 63 (2022) 102139. [11] C. de Leeuwe, W.T. Hu, J. Evans, M. von Stosch, I.S. Metcalfe, Production of high purity H2 through chemical-looping water-gas shift at reforming temperatures - The importance of non-stoichiometric oxygen carriers, Chem. Eng. J. 423 (2021) 130174. [12] J.K. Wang, K.Z. Li, H.A. Wang, Z.S. Li, X. Zhu, Sandwich Ni-phyllosilicate@doped-ceria for moderate-temperature chemical looping dry reforming of methane, Fuel Process. Technol. 232 (2022) 107268. [13] Y.Y. Zhu, N.N. Jin, R.L. Liu, X.Y. Sun, L. Bai, H.J. Tian, X.X. Ma, X.D. Wang, Bimetallic BaFe2MAl9O19 (M=Mn, Ni, and Co) hexaaluminates as oxygen carriers for chemical looping dry reforming of methane, Appl. Energy 258 (2020) 114070. [14] M. Zhu, S.Y. Chen, A. Soomro, J. Hu, Z. Sun, S.W. Ma, W.G. Xiang, Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation, Appl. Energy 225 (2018) 912–921. [15] L.S. Fan, L.A. Zeng, S.W. Luo, Chemical-looping technology platform, AIChE J. 61 (1) (2015) 2–22. [16] X. Zhu, Q. Imtiaz, F. Donat, C.R. Müller, F.X. Li, Chemical looping beyond combustion–a perspective, Energy Environ. Sci. 13 (3) (2020) 772–804. [17] D. Pakhare, J. Spivey, A review of dry (CO2) reforming of methane over noble metal catalysts, Chem. Soc. Rev. 43 (22) (2014) 7813–7837. [18] Z.W. Li, Z.G. Wang, S. Kawi, Sintering and coke resistant core/yolk shell catalyst for hydrocarbon reforming, ChemCatChem 11 (1) (2019) 202–224. [19] M. Lee, H.S. Lim, Y. Kim, J.W. Lee, Enhancement of highly-concentrated hydrogen productivity in chemical looping steam methane reforming using Fe-substituted LaCoO3, Energy Convers. Manag. 207 (2020) 112507. [20] Y.J. Han, M. Tian, C.J. Wang, Y. Kang, L.L. Kang, Y. Su, C.D. Huang, T. Zong, J.A. Lin, B.L. Hou, X.L. Pan, X.D. Wang, Highly active and anticoke Ni/CeO2 with ultralow Ni loading in chemical looping dry reforming via the strong metal–support interaction, ACS Sustainable Chem. Eng. 9 (51) (2021) 17276–17288. [21] H.R. Ding, S.R. Tong, Z.F. Qi, F. Liu, S.E. Sun, L. Han, Syngas production from chemical-looping steam methane reforming: The effect of channel geometry on BaCoO3/CeO2 monolithic oxygen carriers, Energy 263 (2023) 126000. [22] F. Agueniou, H. Vidal, J. de Dios López, J.C. Hernández-Garrido, M.A. Cauqui, F.J. Botana, J.J. Calvino, V.V. Galvita, J.M. Gatica, 3D-printing of metallic honeycomb monoliths as a doorway to a new generation of catalytic devices: The Ni-based catalysts in methane dry reforming showcase, Catal. Commun. 148 (2021) 106181. [23] V. De Coster, N.V. Srinath, S.A. Theofanidis, L. Pirro, A. Van Alboom, H. Poelman, M.K. Sabbe, G.B. Marin, V.V. Galvita, Looking inside a Ni-Fe/MgAl2O4 catalyst for methane dry reforming via Mössbauer spectroscopy and in situ QXAS, Appl. Catal. B 300 (2022) 120720. [24] M.Q. Guo, Z. Cheng, Y. Liu, L. Qin, J. Goetze, J.A. Fan, L.S. Fan, Cobalt doping modification for enhanced methane conversion at low temperature in chemical looping reforming systems, Catal. Today 350 (2020) 156–164. [25] A. Cabello, T. Mendiara, A. Abad, M.T. Izquierdo, F. García-Labiano, Production of hydrogen by chemical looping reforming of methane and biogas using a reactive and durable Cu-based oxygen carrier, Fuel 322 (2022) 124250. [26] N. Son, B.H. Park, S. Kim, M. Kim, N.K. Park, H.J. Ryu, J.I. Baek, M. Kang, Flexible structural transformation and high oxygen-transfer capacity of mixed inverse spinel magnesium manganese oxides during methane chemical looping combustion, Fuel Process. Technol. 232 (2022) 107262. [27] Y.C. Feng, N.N. Wang, X. Guo, S.X. Zhang, Dopant screening of modified Fe2O3 oxygen carriers in chemical looping hydrogen production, Fuel 262 (2020) 116489. [28] P.O. Schmidt, T. Rosenband, C. Langer, W.M. Itano, J.C. Bergquist, D.J. Wineland, Spectroscopy using quantum logic, Science 309 (5735) (2005) 749–752. [29] V.V. Galvita, H. Poelman, C. Detavernier, G.B. Marin, Catalyst-assisted chemical looping for CO2 conversion to CO, Appl. Catal. B 164 (2015) 184–191. [30] A. Löfberg, J. Guerrero-Caballero, T. Kane, A. Rubbens, L. Jalowiecki-Duhamel, Ni/CeO2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production, Appl. Catal. B 212 (2017) 159–174. [31] Z.S. Cao, X. Zhu, K.Z. Li, Y.G. Wei, F. He, H. Wang, Moderate-temperature chemical looping splitting of CO2 and H2O for syngas generation, Chem. Eng. J. 397 (2020) 125393. [32] J.J. Wen, Y. Xie, Y.P. Ma, H.Y. Sun, H.M. Wang, M. Liu, Q.L. Zhang, J.J. Chen, Engineering of surface properties of Ni-CeZrAl catalysts for dry reforming of methane, Fuel 308 (2022) 122008. [33] Z. Xuan Law, Y.T. Pan, D.H. Tsai, Calcium looping of CO2 capture coupled to syngas production using Ni-CaO-based dual functional material, Fuel 328 (2022) 125202. [34] Z.W. Li, S. Das, P. Hongmanorom, N. Dewangan, M.H. Wai, S. Kawi, Silica-based micro- and mesoporous catalysts for dry reforming of methane, Catal. Sci. Technol. 8 (11) (2018) 2763–2778. [35] Z. Cheng, L. Zhang, N.N. Jin, Y.Y. Zhu, L.H. Chen, Q. Yang, M. Yan, X.X. Ma, X.D. Wang, Effect of calcination temperature on the performance of hexaaluminate supported CeO2 for chemical looping dry reforming, Fuel Process. Technol. 218 (2021) 106873. [36] Z.Q. Li, X.B. Feng, Z.H. Gu, C.Q. Lu, D.Y. Li, X. Zhu, L. Jiang, G.X. Deng, K.Z. Li, Enhanced performance of the CeO2MgO oxygen carrier by NiO for chemical looping CO2 splitting, Fuel Process. Technol. 225 (2022) 107045. [37] L.M. Neal, A. Shafiefarhood, F.X. Li, Dynamic methane partial oxidation using a Fe2O3@La0.8Sr0.2FeO3-δ core–shell redox catalyst in the absence of gaseous oxygen, ACS Catal. 4 (10) (2014) 3560–3569. [38] S.R. Yahyavi, M. Haghighi, S. Shafiei, M. Abdollahifar, F. Rahmani, Ultrasound-assisted synthesis and physicochemical characterization of Ni-Co/Al2O3-MgO nanocatalysts enhanced by different amounts of MgO used for CH4/CO2 reforming, Energy Convers. Manag. 97 (2015) 273–281. [39] Z.W. Li, B. Jiang, Z.G. Wang, S. Kawi, High carbon resistant Ni@Ni phyllosilicate@SiO2 core shell hollow sphere catalysts for low temperature CH4 dry reforming, J. CO2 Util. 27 (2018) 238–246. [40] P.P. Ghimire, M. Jaroniec, Renaissance of Stöber method for synthesis of colloidal particles: New developments and opportunities, J. Colloid Interface Sci. 584 (2021) 838–865. [41] M.M. Elgarni, M.M. Tijani, N. Mahinpey, Characterization, kinetics and stability studies of NiO and CuO supported by Al2O3, ZrO2, CeO2 and their combinations in chemical looping combustion, Catal. Today 397-399 (2022) 206–219. [42] S.P. Wu, H.M. Liu, Z. Huang, H.L. Xu, W. Shen, Mn1ZrxOy mixed oxides with abundant oxygen vacancies for propane catalytic oxidation: Insights into the contribution of Zr doping, Chem. Eng. J. 452 (2023) 139341. [43] Z.W. Li, S. Kawi, Multi-Ni@Ni phyllosilicate hollow sphere for CO2 reforming of CH4: Influence of Ni precursors on structure, sintering, and carbon resistance, Catal. Sci. Technol. 8 (7) (2018) 1915–1922. [44] Y.E. Zheng, K.Z. Li, H. Wang, D. Tian, Y.H. Wang, X. Zhu, Y.G. Wei, M. Zheng, Y.M. Luo, Designed oxygen carriers from macroporous LaFeO3 supported CeO2 for chemical-looping reforming of methane, Appl. Catal. B 202 (2017) 51–63. [45] M. Qasim, M. Ayoub, N.A. Ghazali, A. Aqsha, M. Ameen, Recent advances and development of various oxygen carriers for the chemical looping combustion process: A review, Ind. Eng. Chem. Res. 60 (24) (2021) 8621–8641. [46] C. Lin, J.B. Jang, L.H. Zhang, E.A. Stach, R.J. Gorte, Improved coking resistance of “intelligent” Ni catalysts prepared by atomic layer deposition, ACS Catal. 8 (8) (2018) 7679–7687. [47] J. Guerrero-Caballero, T. Kane, N. Haidar, L. Jalowiecki-Duhamel, A. Löfberg, Ni, Co, Fe supported on Ceria and Zr doped Ceria as oxygen carriers for chemical looping dry reforming of methane, Catal. Today 333 (2019) 251–258. [48] H.C. Li, K.Z. Li, H. Wang, X. Zhu, Y.G. Wei, D.X. Yan, X.M. Cheng, K. Zhai, Soot combustion over Ce1-xFexO2-δ and CeO2/Fe2O3 catalysts: Roles of solid solution and interfacial interactions in the mixed oxides, Appl. Surf. Sci. 390 (2016) 513–525. [49] B. AlSabban, L. Falivene, S.M. Kozlov, A. Aguilar-Tapia, S. Ould-Chikh, J.L. Hazemann, L. Cavallo, J.M. Basset, K. Takanabe, In-operando elucidation of bimetallic CoNi nanoparticles during high-temperature CH4/CO2 reaction, Appl. Catal. B 213 (2017) 177–189. [50] L. Yao, M.E. Galvez, C.W. Hu, P. Da Costa, Synthesis gas production via dry reforming of methane over manganese promoted nickel/cerium–zirconium oxide catalyst, Ind. Eng. Chem. Res. 57 (49) (2018) 16645–16656. [51] J.W. Hu, P. Hongmanorom, V.V. Galvita, Z. Li, S. Kawi, Bifunctional Ni-Ca based material for integrated CO2 capture and conversion via calcium-looping dry reforming, Appl. Catal. B 284 (2021) 119734. [52] Z.W. Li, Z.G. Wang, B. Jiang, S. Kawi, Sintering resistant Ni nanoparticles exclusively confined within SiO2 nanotubes for CH4 dry reforming, Catal. Sci. Technol. 8 (13) (2018) 3363–3371. [53] Z.W. Li, M. Li, J. Ashok, S. Kawi, NiCo@NiCo phyllosilicate@CeO2 hollow core shell catalysts for steam reforming of toluene as biomass tar model compound, Energy Convers. Manag. 180 (2019) 822–830. [54] Z.W. Li, Y. Kathiraser, S. Kawi, Facile synthesis of high surface area yolk-shell Ni@Ni embedded SiO2 via Ni phyllosilicate with enhanced performance for CO2Reforming of CH4, ChemCatChem 7 (1) (2015) 160–168. |