[1] D. Penner, C. Redepenning, A. Mitsos, J. Viell, Conceptual design of methyl ethyl ketone production via 2, 3-butanediol for fuels and chemicals, Ind. Eng. Chem. Res. 56 (14) (2017) 3947–3957. [2] A. Romero, P. Yustos, A. Santos, Dehydrogenation of cyclohexanol to cyclohexanone: Influence of methylcyclopentanols on the impurities obtained in ε-caprolactam, Ind. Eng. Chem. Res. 42 (16) (2003) 3654–3661. [3] Y.C. Chen, K.L. Li, C.L. Chen, I.L. Chien, Design and control of a hybrid extraction–distillation system for the separation of pyridine and water, Ind. Eng. Chem. Res. 54 (31) (2015) 7715–7727. [4] Y. Cui, Z.S. Zhang, X.J. Shi, C. Guang, J. Gao, Triple-column side-stream extractive distillation optimization via simulated annealing for the benzene/isopropanol/water separation, Sep. Purif. Technol. 236 (2020) 116303. [5] Y.Y. Shen, Q. Zhao, H.Y. Li, X.Y. Liu, Z.R. Chen, Z.Y. Zhu, P.Z. Cui, Y.X. Ma, Y.L. Wang, Design and optimization of reactive dividing-wall extractive distillation process for dimethyl carbonate synthesis based on quantum chemistry and molecular dynamics calculation, Sep. Purif. Technol. 273 (2021) 118978. [6] I.D. Gil, D.C. Botía, P. Ortiz, O.F. Sánchez, Extractive distillation of acetone/methanol mixture using water as entrainer, Ind. Eng. Chem. Res. 48 (10) (2009) 4858–4865. [7] L.M. Li, Y.Q. Tu, L.Y. Sun, Y.F. Hou, M.Y. Zhu, L.J. Guo, Q.S. Li, Y.Y. Tian, Enhanced efficient extractive distillation by combining heat-integrated technology and intermediate heating, Ind. Eng. Chem. Res. 55 (32) (2016) 8837–8847. [8] C. Wang, Y. Zhuang, Y.C. Dong, L.L. Liu, L. Zhang, J. Du, Conceptual design of sustainable extractive distillation processes combining preconcentration and extractive distillation functions for separating ternary multi-azeotropic mixture, Chem. Eng. Sci. 263 (2022) 118088. [9] Y.D. Chaniago, M. Lee, Distillation design and optimization of quaternary azeotropic mixtures for waste solvent recovery, J. Ind. Eng. Chem. 67 (2018) 255–265. [10] W.L. Luyben, Methanol/trimethoxysilane azeotrope separation using pressure-swing distillation, Ind. Eng. Chem. Res. 53 (13) (2014) 5590–5597. [11] Y.L. Wang, H.R. Zhang, X. Yang, Y.Y. Shen, Z.R. Chen, P.Z. Cui, L. Wang, F.Q. Meng, Y.X. Ma, J. Gao, Insight into separation of azeotrope in wastewater to achieve cleaner production by extractive distillation and pressure-swing distillation based on phase equilibrium, J. Clean. Prod. 276 (2020) 124213. [12] W.L. Luyben, Comparison of extractive distillation and pressure-swing distillation for acetone–methanol separation, Ind. Eng. Chem. Res. 47 (8) (2008) 2696–2707. [13] Z.Y. Zhu, S.H. Li, Y. Dai, X. Yang, Y.L. Wang, J. Gao, Control of a pressure-swing distillation process for benzene/isopropanol/water separation with and without heat integration, Sep. Purif. Technol. 236 (2020) 116311. [14] Y.Y. Jiao, M. Yan, X.L. Wang, J.H. Zhong, Y.S. Chen, W.G. Zhu, X. Li, Z.Y. Zhu, P.Z. Cui, Y.Y. Lu, Y.L. Wang, Economic, environmental, energy and exergy analysis and multi-objective optimization for efficient purification of a friendly gasoline additive by extractive distillation coupled with pervaporation, Fuel 335 (2023) 127069. [15] J.P. Knapp, M.F. Doherty, A new pressure-swing-distillation process for separating homogeneous azeotropic mixtures, Ind. Eng. Chem. Res. 31 (1) (1992) 346–357. [16] W.S. Li, L. Shi, B.R. Yu, M. Xia, J.W. Luo, H.C. Shi, C.J. Xu, New pressure-swing distillation for separating pressure-insensitive maximum boiling azeotrope via introducing a heavy entrainer: Design and control, Ind. Eng. Chem. Res. 52 (23) (2013) 7836–7853. [17] Y.T. Qin, Y. Zhuang, C. Wang, L. Zhang, L.L. Liu, J. Du, Multi-objective optimization and comparison of the entrainer-assisted pressure-swing distillation and extractive distillation separation sequences for separating a pressure-insensitive binary azeotrope, Comput. Chem. Eng. 165 (2022) 107959. [18] Y. Li, C.J. Xu, Pressure-swing distillation for separating pressure-insensitive minimum boiling azeotrope methanol/toluene via introducing a light entrainer: Design and control, Ind. Eng. Chem. Res. 56 (14) (2017) 4017–4037. [19] Y.S. Dai, X.Y. Zhou, X.J. Chu, C. Li, Z.H. Su, Z.Y. Zhu, P.Z. Cui, J.G. Qi, Y.L. Wang, Effect of entrainer thermodynamic properties on the separation of ternary mixtures containing two minimum boiling azeotropes by extractive distillation, Ind. Eng. Chem. Res. 61 (41) (2022) 15273–15288. [20] G. Modla, P. Láng, Á. Kopasz, Entrainer selection for pressure swing batch distillation, Comput. Aided Chem. Eng., 25 (2008) 3-5. [21] Y.D. Li, T.Y. Sun, Q. Ye, Y.G. Xu, X. Jian, J.L. Li, Investigation on energy-efficient extractive distillation for the recovery of ethyl acetate and 1, 4-dioxane from industrial effluent, J. Clean. Prod. 329 (2021) 129759. [22] Y.G. Xu, J.L. Li, Q. Ye, Y.D. Li, Energy efficient extractive distillation process assisted with heat pump and heat integration to separate acetonitrile/1, 4-dioxane/water, Process. Saf. Environ. Prot. 156 (2021) 144–159. [23] Y. Cui, X.J. Shi, C. Guang, Z.S. Zhang, C. Wang, C. Wang, Comparison of pressure-swing distillation and heterogeneous azeotropic distillation for recovering benzene and isopropanol from wastewater, Process. Saf. Environ. Prot. 122 (2019) 1–12. [24] Q.Q. Rui, Q. Ye, J.L. Li, Y. Wang, A.Z. Yu, Investigation on energy-saving extractive distillation for recovering ethanol and 1, 4-dioxane from wastewater, Process. Saf. Environ. Prot. 170 (2023) 498–512. [25] H.R. Zhang, S. Wang, J.X. Tang, N.N. Li, Y.N. Li, P.Z. Cui, Y.L. Wang, S.Q. Zheng, Z.Y. Zhu, Y.X. Ma, Multi-objective optimization and control strategy for extractive distillation with dividing-wall column/pervaporation for separation of ternary azeotropes based on mechanism analysis, Energy 229 (2021) 120774. [26] J.A. Vázquez-Castillo, J.G. Segovia-Hernández, J.M. Ponce-Ortega, Multiobjective optimization approach for integrating design and control in multicomponent distillation sequences, Ind. Eng. Chem. Res. 54 (49) (2015) 12320–12330. [27] F. Zhao, Z.F. Xu, J.G. Zhao, J. Wang, M.Y. Hu, X. Li, Z.Y. Zhu, P.Z. Cui, Y.L. Wang, Y.X. Ma, Process design and multi-objective optimization for separation of ternary mixtures with double azeotropes via integrated quasi-continuous pressure-swing batch distillation, Sep. Purif. Technol. 276 (2021) 119288. [28] G. Miao, K.S. Zhuo, G.Q. Li, J. Xiao, An advanced optimization strategy for enhancing the performance of a hybrid pressure-swing distillation process in effective binary-azeotrope separation, Sep. Purif. Technol. 282 (2022) 120130. [29] A. Yang, L. Ernawati, M. Wang, Z.Y. Kong, J. Sunarso, S.R. Sun, W.F. Shen, Multi-objective optimization of the intensified extractive distillation with side-reboiler for the recovery of ethyl acetate and methanol from wastewater, Sep. Purif. Technol. 310 (2023) 123131. [30] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evol. Computat. 6 (2) (2002) 182–197. [31] S.R. Pandit, A.K. Jana, Transforming conventional distillation sequence to dividing wall column: Minimizing cost, energy usage and environmental impact through genetic algorithm, Sep. Purif. Technol. 297 (2022) 121437. [32] J.L. Yan, J.Y. Liu, J.Y. Ren, Y. Wu, X.N. Li, T. Sun, L.Y. Sun, Design and multi-objective optimization of hybrid reactive-extractive distillation process for separating wastewater containing benzene and isopropanol, Sep. Purif. Technol. 290 (2022) 120915. [33] B. Mondal, G.P. Rangaiah, A.K. Jana, Optimizing algal biodiesel production from a novel reactive distillation based unit: Reducing CO2 emission and cost, Chem. Eng. Process. Process. Intensif. 176 (2022) 108948. [34] Q. Zhao, Y.N. Li, C. Li, M. Yan, Z.Y. Zhu, P.Z. Cui, J.G. Qi, Y.L. Wang, C.X. Wang, Molecular dynamics-assisted process design and multi-objective optimization for efficient production of N-butyl acetate by reactive-extractive distillation/pervaporation, Sep. Purif. Technol. 296 (2022) 121427. [35] C. Gutiérrez-Antonio, A. Briones-Ramírez, Pareto front of ideal Petlyuk sequences using a multiobjective genetic algorithm with constraints, Comput. Chem. Eng. 33 (2) (2009) 454–464. [36] H. Benyounes, W.F. Shen, V. Gerbaud, Entropy flow and energy efficiency analysis of extractive distillation with a heavy entrainer, Ind. Eng. Chem. Res. 53 (12) (2014) 4778–4791. [37] H.R. Zhang, F. Zhao, Z.Y. Ma, X.Y. Liu, P.Z. Cui, J. Gao, Y.L. Wang, S.Q. Zheng, Design and optimization for the separation of cyclohexane-isopropanol-water using mixed extractants with thermal integration based on molecular mechanism, Sep. Purif. Technol. 266 (2021) 118541. [38] P.Z. Cui, F. Zhao, D. Yao, Z.Y. Ma, S.H. Li, X. Li, L. Wang, Z.Y. Zhu, Y.L. Wang, Y.X. Ma, D.M. Xu, Energy-saving exploration of mixed solvent extractive distillation combined with thermal coupling or heat pump technology for the separation of an azeotrope containing low-carbon alcohol, Ind. Eng. Chem. Res. 59 (29) (2020) 13204–13219. [39] W.L. Luyben, Distillation Design and Control Using Aspen Simulation, Wiley, New York, 2006. |