中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (3): 75-93.DOI: 10.1016/j.cjche.2020.10.029
• Special Issue on Frontiers of Chemical Engineering Thermodynamics • 上一篇 下一篇
Fangfang Li1, Francesca Mocci2, Xiangping Zhang3, Xiaoyan Ji1, Aatto Laaksonen1,4,5,6
收稿日期:
2020-09-01
修回日期:
2020-10-26
出版日期:
2021-03-28
发布日期:
2021-05-13
通讯作者:
Xiaoyan Ji, Aatto Laaksonen
基金资助:
Fangfang Li1, Francesca Mocci2, Xiangping Zhang3, Xiaoyan Ji1, Aatto Laaksonen1,4,5,6
Received:
2020-09-01
Revised:
2020-10-26
Online:
2021-03-28
Published:
2021-05-13
Contact:
Xiaoyan Ji, Aatto Laaksonen
Supported by:
摘要: Electrochemical reduction of CO2 is a novel research field towards a CO2-neutral global economy and combating fast accelerating and disastrous climate changes while finding new solutions to store renewable energy in value-added chemicals and fuels. Ionic liquids (ILs), as medium and catalysts (or supporting part of catalysts) have been given wide attention in the electrochemical CO2 reduction reaction (CO2RR) due to their unique advantages in lowering overpotential and improving the product selectivity, as well as their designable and tunable properties. In this review, we have summarized the recent progress of CO2 electro-reduction in IL-based electrolytes to produce higher-value chemicals. We then have highlighted the unique enhancing effect of ILs on CO2RR as templates, precursors, and surface functional moieties of electrocatalytic materials. Finally, computational chemistry tools utilized to understand how the ILs facilitate the CO2RR or to propose the reaction mechanisms, generated intermediates and products have been discussed.
Fangfang Li, Francesca Mocci, Xiangping Zhang, Xiaoyan Ji, Aatto Laaksonen. Ionic liquids for CO2 electrochemical reduction[J]. 中国化学工程学报, 2021, 29(3): 75-93.
Fangfang Li, Francesca Mocci, Xiangping Zhang, Xiaoyan Ji, Aatto Laaksonen. Ionic liquids for CO2 electrochemical reduction[J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 75-93.
[1] A. Al-Mamoori, A. Krishnamurthy, A.A. Rownaghi, F. Rezaei, Carbon capture and utilization update, Energy Technol. 5(2017) 834-849. [2] S. Hernandez, M.A. Farkhondehfal, F. Sastre, M. Makkee, G. Saracco, N. Russo, Syngas production from electrochemical reduction of CO2:Current status and prospective implementation, Green Chem. 19(2017) 2326-2346. [3] H. Yang, C. Zhang, P. Gao, H. Wang, X. Li, L. Zhong, W. Wei, Y. Sun, A review of the catalytic hydrogenation of carbon dioxide into value-added hydrocarbons, Catal. Sci. Technol. 7(2017) 4580-4598. [4] M. Aresta, A. Dibenedetto, E. Quaranta, State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels:The distinctive contribution of chemical catalysis and biotechnology, J. Catal. 343(2016) 2-45. [5] O.S. Bushuyev, P. De Luna, D. Cao Thang, L. Tao, G. Saur, J. van de lagemaat, S. O. Kelley, E.H. Sargent, What should we make with CO2 and how can we make it? Joule 2(2018) 825-832. [6] M. Liu, Y. Yi, L. Wang, H. Guo, A. Bogaerts, Hydrogenation of carbon dioxide to value-added chemicals by heterogeneous catalysis and plasma catalysis, Catalysts 9(2019) 275-311. [7] L. Nguyen Van Duc, J. Lee, K.-K. Koo, P. Luis, M. Lee, Recent progress and novel applications in enzymatic conversion of carbon dioxide, Energies 10(2017) 473-491. [8] L. Zhang, Z.-J. Zhao, T. Wang, J. Gong, Nano-designed semiconductors for electro-and photoelectro-catalytic conversion of carbon dioxide, Chem. Soc. Rev. 47(2018) 5423-5443. [9] Z. Fu, Q. Yang, Z. Liu, F. Chen, F. Yao, T. Xie, Y. Zhong, D. Wang, J. Li, X. Li, G. Zeng, Photocatalytic conversion of carbon dioxide:From products to design the catalysts, J. CO2 Util. 34(2019) 63-73. [10] A.S. Reis Machado, M.N. da Ponte, CO2 capture and electrochemical conversion, Curr. Opin. Green Sustain. Chem. 11(2018) 86-90. [11] X.-M. Hu, S.U. Pedersen, K. Daasbjerg, Supported molecular catalysts for the heterogeneous CO2 electroreduction, Curr. Opin. Electrochem. 15(2019) 148-154. [12] M. Moura de Salles Pupo, R. Kortlever, Electrolyte effects on the electrochemical reduction of CO2, Chemphyschem 20(2019) 2926-2935. [13] W.D.G. Goncalves, M. Zanatta, N.M. Simon, L.M. Rutzen, D.A. Walsh, J. Dupont, Efficient electrocatalytic CO2 reduction driven by ionic liquid buffer-like solutions, ChemSusChem 12(2019) 4170-4175. [14] J. Shi, F. Shi, N. Song, J.X. Liu, X.K. Yang, Y.J. Jia, Z.W. Xiao, P. Du, A novel electrolysis cell for CO2 reduction to CO in ionic liquid/organic solvent electrolyte, J. Power Sources 259(2014) 50-53. [15] B.A. Rosen, A. Salehi-Khojin, M.R. Thorson, W. Zhu, D.T. Whipple, P.J.A. Kenis, R.I. Masel, Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials, Science 334(2011) 643-644. [16] M. Alvarez-Guerra, J. Albo, E. Alvarez-Guerra, A. Irabien, Ionic liquids in the electrochemical valorisation of CO2, Energy Environ. Sci. 8(2015) 2574-2599. [17] H.K. Lim, H. Kim, The mechanism of room-temperature ionic-liquid-based electrochemical CO2 reduction:A review, Molecules 22(2017) 536-551. [18] J. Feng, S. Zeng, J. Feng, H. Dong, X. Zhang, CO2 electroreduction in ionic liquids:A review, Chin. J. Chem. 36(2018) 961-970. [19] M. Konig, J. Vaes, E. Klemm, D. Pant, Solvents and supporting electrolytes in the electrocatalytic reduction of CO2, iScience 19(2019) 135-160. [20] Z.H. Duan, R. Sun, C. Zhu, I.M. Chou, An improved model for the calculation of CO2 solubility in aqueous solutions containing Na+, K+, Ca2+, Mg2+, Cl-, and SO2-4, Mar. Chem. 98(2006) 131-139. [21] J.L. DiMeglio, J. Rosenthal, Selective conversion of CO2 to CO with high efficiency using an inexpensive bismuth-based electrocatalyst, J. Am. Chem. Soc. 135(2013) 8798-8801. [22] J. Medina-Ramos, J.L. DiMeglio, J. Rosenthal, Efficient reduction of CO2 to CO with high current density using in situ or ex situ prepared Bi-based materials, J. Am. Chem. Soc. 136(2014) 8361-8367. [23] F. Zhou, S. Liu, B. Yang, P. Wang, A.S. Alshammari, Y. Deng, Highly selective electrocatalytic reduction of carbon dioxide to carbon monoxide on silver electrode with aqueous ionic liquids, Electrochem. Commun. 46(2014) 103-106. [24] J.H. Koh, H.S. Jeon, M.S. Jee, E.B. Nursanto, H. Lee, Y.J. Hwang, B.K. Min, Oxygen plasma induced hierarchically structured gold electrocatalyst for selective reduction of carbon dioxide to carbon monoxide, J. Phys. Chem. C 119(2014) 883-889. [25] M. Asadi, B. Kumar, A. Behranginia, B.A. Rosen, A. Baskin, N. Repnin, D. Pisasale, P. Phillips, W. Zhu, R. Haasch, R.F. Klie, P. Kral, J. Abiade, A. SalehiKhojin, Robust carbon dioxide reduction on molybdenum disulphide edges, Nat. Commun 5(2014) 4470-4477. [26] F. Zhou, S. Liu, B. Yang, P. Wang, A.S. Alshammari, Y. Deng, Highly selective and stable electro-catalytic system with ionic liquids for the reduction of carbon dioxide to carbon monoxide, Electrochem. Commun. 55(2015) 43-46. [27] Y. Oh, X. Hu, Ionic liquids enhance the electrochemical CO2 reduction catalyzed by MoO2, Chem. Commum. 51(2015) 13698-13701. [28] L. Chen, S.X. Guo, F. Li, C. Bentley, M. Horne, A.M. Bond, J. Zhang, Electrochemical reduction of CO2 at metal electrodes in a distillable ionic liquid, ChemSusChem 9(2016) 1271-1278. [29] Q. Zhu, J. Ma, X. Kang, X. Sun, J. Hu, G. Yang, B. Han, Electrochemical reduction of CO2 to CO using graphene oxide/carbon nanotube electrode in ionic liquid/acetonitrile system, Sci. China Chem. 59(2016) 551-556. [30] C. Ding, A. Li, S.-M. Lu, H. Zhang, C. Li, In situ electrodeposited indium nanocrystals for efficient CO2 reduction to CO with low overpotential, ACS Catal. 6(2016) 6438-6443. [31] M. Asadi, K. Kim, C. Liu, A.V. Addepalli, P. Abbasi, P. Yasaei, P. Phillips, A. Behranginia, J.M. Cerrato, R. Haasch, P. Zapol, B. Kumar, R.F. Klie, J. Abiade, L.A. Curtiss, A. Salehi-Khojin, Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid, Science 353(2016) 467-470. [32] G.P. Lau, M. Schreier, D. Vasilyev, R. Scopelliti, M. Gratzel, P.J. Dyson, New insights into the role of imidazolium-based promoters for the electroreduction of CO2 on a silver electrode, J. Am. Chem. Soc. 138(2016) 7820-7823. [33] S.S. Neubauer, R.K. Krause, B. Schmid, D.M. Guldi, G. Schmid, Overpotentials and faraday efficiencies in CO2 electrocatalysis-the impact of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, Adv. Energy Mater. 6(2016) 1502231-1502236. [34] Z. Zhang, M. Chi, G.M. Veith, P. Zhang, D.A. Lutterman, J. Rosenthal, S.H. Overbury, S. Dai, H. Zhu, Rational design of Bi nanoparticles for efficient electrochemical CO2 reduction:The elucidation of size and surface condition effects, ACS Catal. 6(2016) 6255-6264. [35] S.S. Neubauer, B. Schmid, C. Reller, D.M. Guldi, G. Schmid, Alkalinity initiated decomposition of mediating imidazolium ions in high current density CO2 electrolysis, ChemElectroChem 4(2017) 160-167. [36] J. Honores, D. Quezada, M. García, K. Calfumán, J.P. Muena, M.J. Aguirre, M.C. Arévalo, M. Isaacs, Carbon neutral electrochemical conversion of carbon dioxide mediated byMn+(cyclam)Cln] (M=Ni2+ and Co3+ on mercury free electrodes and ionic liquids as reaction media, Green Chem. 19(2017) 1155-1162. [37] L. Zhang, N. Wu, J. Zhang, Y. Hu, Z. Wang, L. Zhuang, X. Jin, Imidazolium ions with an alcohol substituent for enhanced electrocatalytic reduction of CO2, ChemSusChem 10(2017) 4824-4828. [38] P. Abbasi, M. Asadi, C. Liu, S. Sharifi-Asl, B. Sayahpour, A. Behranginia, P. Zapol, R. Shahbazian-Yassar, L.A. Curtiss, A. Salehi-Khojin, Tailoring the edge structure of molybdenum disulfide toward electrocatalytic reduction of carbon dioxide, ACS Nano 11(2017) 453-460. [39] A. Atifi, D.W. Boyce, J.L. DiMeglio, J. Rosenthal, Directing the outcome of CO2 reduction at bismuth cathodes using varied ionic liquid promoters, ACS Catal 8(2018) 2857-2863. [40] A. Hailu, S.K. Shaw, Efficient electrocatalytic reduction of carbon dioxide in 1-ethyl-3-methylimidazolium trifluoromethanesulfonate and water mixtures, Energy Fuel 32(2018) 12695-12702. [41] D. Vasilyev, E. Shirzadi, A.V. Rudnev, P. Broekmann, P.J. Dyson, Pyrazolium ionic liquid co-catalysts for the electroreduction of CO2, ACS Appl. Energy Mater. 1(2018) 5124-5128. [42] S. Liu, H. Tao, Q. Liu, Z. Xu, Q. Liu, J.-L. Luo, Rational design of silver sulfide nanowires for efficient CO2 electroreduction in ionic liquid, ACS Catal. 8(2018) 1469-1475. [43] T.Y. Chen, J. Shi, F.X. Shen, J.Z. Zhen, Y.F. Li, F. Shi, B. Yang, Y.J. Jia, Y.N. Dai, Y.Q. Hu, Selection of low-cost ionic liquid electrocatalyst for CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate, Chemelectrochem 5(2018) 2295-2300. [44] H. Zhang, J. Wang, Z. Zhao, H. Zhao, M. Cheng, A. Li, C. Wang, J. Wang, J. Wang, The synthesis of atomic fe embedded in bamboo-CNTs grown on graphene as a superior CO2 electrocatalyst, Green Chem. 20(2018) 3521-3529. [45] A. Khadhraoui, P. Gotico, B. Boitrel, W. Leibl, Z. Halime, A. Aukauloo, Local ionic liquid environment at a modified iron porphyrin catalyst enhances the electrocatalytic performance of CO2 to CO reduction in water, Chem. Commun. (Camb) 54(2018) 11630-11633. [46] R. Sacci, S. Velardo, L. Xiong, D. Lutterman, J. Rosenthal, Copper-tin alloys for the electrocatalytic reduction of CO2 in an imidazolium-based non-aqueous electrolyte, Energies 12(2019) 3132-3143. [47] A.V. Rudnev, K. Kiran, A. Cedeño López, A. Dutta, I. Gjuroski, J. Furrer, P. Broekmann, Enhanced electrocatalytic CO formation from CO2 on nanostructured silver foam electrodes in ionic liquid/water mixtures, Electrochim. Acta 306(2019) 245-253. [48] X. Cheng, D. Tan, S. Zeng, X. Zhang, X. Tan, J. Shi, B. Zhang, L. Zheng, F. Zhang, J. Feng, L. Liu, Q. Wan, G. Chen, B. Han, J. Zhang, P. An, J. Zhang, Metal ionic liquids produce metal-dispersed carbon-nitrogen networks for efficient CO2 electroreduction, Chemcatchem 11(2019) 3166-3170. [49] A. Atifi, T.P. Keane, J.L. DiMeglio, R.C. Pupillo, D.R. Mullins, D.A. Lutterman, J. Rosenthal, Insights into the composition and function of a bismuth-based catalyst for reduction of CO2 to CO, J. Phys. Chem. C 123(2019) 9087-9095. [50] V. Vedharathinam, Z. Qi, C. Horwood, B. Bourcier, M. Stadermann, J. Biener, M. Biener, Using a 3D porous flow-through electrode geometry for high-rate electrochemical reduction of CO2 to CO in ionic liquid, ACS Catal. 9(2019) 10605-10611. [51] T. Kunene, A. Atifi, J. Rosenthal, Selective CO2 reduction over rose's metal in the presence of an imidazolium ionic liquid electrolyte, ACS Appl. Energy Mater. 3(2019) 4193-4200. [52] J.D. Watkins, A.B. Bocarsly, Direct reduction of carbon dioxide to formate in high-gas-capacity ionic liquids at post-transition-metal electrodes, ChemSusChem 7(2014) 284-290. [53] N. Hollingsworth, S.F. Taylor, M.T. Galante, J. Jacquemin, C. Longo, K.B. Holt, N. H. de Leeuw, C. Hardacre, Reduction of carbon dioxide to formate at low overpotential using a superbase ionic liquid, Angew. Chem. Int. Ed. Engl. 54(2015) 14164-14168. [54] Q. Zhu, J. Ma, X. Kang, X. Sun, H. Liu, J. Hu, Z. Liu, B. Han, Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture, Angew. Chem. Int. Ed. Engl. 55(2016) 9012-9016. [55] X. Kang, X. Sun, Q. Zhu, X. Ma, H. Liu, J. Ma, Q. Qian, B. Han, Synthesis of hierarchical mesoporous prussian blue analogues in ionic liquid/water/MgCl2 and application in electrochemical reduction of CO2, Green Chem. 18(2016) 1869-1873. [56] X. Zhang, Y. Zhao, S. Hu, M.E. Gliege, Y. Liu, R. Liu, L. Scudiero, Y. Hu, S. Ha, Electrochemical reduction of carbon dioxide to formic acid in ionic liquid[Emim] [N(CN)2]/water system, Electrochim. Acta 247(2017) 281-287. [57] T.N. Huan, P. Simon, G. Rousse, I. Genois, V. Artero, M. Fontecave, Porous dendritic copper:An electrocatalyst for highly selective CO2 reduction to formate in water/ionic liquid electrolyte, Chem. Sci. 8(2017) 742-747. [58] L. Lu, X. Sun, J. Ma, Q. Zhu, C. Wu, D. Yang, B. Han, Selective electroreduction of carbon dioxide to formic acid on electrodeposited SnO2@n-doped porous carbon catalysts, Sci. China Chem. 61(2017) 228-235. [59] H. Wu, J. Song, C. Xie, Y. Hu, J. Ma, Q. Qian, B. Han, Design of naturally derived lead phytate as an electrocatalyst for highly efficient CO2 reduction to formic acid, Green Chem. 20(2018) 4602-4606. [60] H. Wu, J. Song, C. Xie, Y. Hu, B. Han, Highly efficient electrochemical reduction of CO2 into formic acid over lead dioxide in an ionic liquid-catholyte mixture, Green Chem. 20(2018) 1765-1769. [61] J. Feng, S. Zeng, H. Liu, J. Feng, H. Gao, L. Bai, H. Dong, S. Zhang, X. Zhang, Insights into carbon dioxide electroreduction in ionic liquids:Carbon dioxide activation and selectivity tailored by ionic microhabitat, ChemSusChem 11(2018) 3191-3197. [62] X. Sun, L. Lu, Q. Zhu, C. Wu, D. Yang, C. Chen, B. Han, MoP nanoparticles supported on indium-doped porous carbon:Outstanding catalysts for highly efficient CO2 electroreduction, Angew. Chem. Int. Ed. Engl. 57(2018) 2427-2431. [63] P. Huang, M. Cheng, H. Zhang, M. Zuo, C. Xiao, Y. Xie, Single Mo atom realized enhanced CO2 electro-reduction into formate on N-doped graphene, Nano Energy 61(2019) 428-434. [64] J. Feng, H. Gao, J. Feng, L. Liu, S. Zeng, H. Dong, Y. Bai, L. Liu, X. Zhang, Morphology modulation-engineered flowerlike In2S3 via ionothermal method for efficient CO2 electroreduction, Chemcatchem 12(2020) 926-931. [65] A. Hailu, A.A. Tamijani, S.E. Mason, S.K. Shaw, Efficient conversion of CO2 to formate using inexpensive and easily prepared post-transition metal alloy catalysts, Energy Fuel 34(2020) 3467-3476. [66] Q. Zhu, D. Yang, H. Liu, X. Sun, C. Chen, J. Bi, J. Liu, H. Wu, B. Han, Hollow metal-organic-framework-mediated in situ architecture of copper dendrites for enhanced CO2 electroreduction, Angew. Chem. Int. Ed. Engl. 59(2020) 8896-8901. [67] X. Sun, Q. Zhu, X. Kang, H. Liu, Q. Qian, Z. Zhang, B. Han, Molybdenumbismuth bimetallic chalcogenide nanosheets for highly efficient electrocatalytic reduction of carbon dioxide to methanol, Angew. Chem. Int. Ed. Engl. 55(2016) 6771-6775. [68] L. Lu, X. Sun, J. Ma, D. Yang, H. Wu, B. Zhang, J. Zhang, B. Han, Highly efficient electroreduction of CO2 to methanol on palladium-copper bimetallic aerogels, Angew. Chem. Int. Ed. Engl. 57(2018) 14149-14153. [69] D. Yang, Q. Zhu, C. Chen, H. Liu, Z. Liu, Z. Zhao, X. Zhang, S. Liu, B. Han, Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts, Nat. Commun. 10(2019) 677-685. [70] X. Sun, X. Kang, Q. Zhu, J. Ma, G. Yang, Z. Liu, B. Han, Very highly efficient reduction of CO2 to CH4 using metal-free N-doped carbon electrodes, Chem. Sci. 7(2016) 2883-2887. [71] X. Kang, Q. Zhu, X. Sun, J. Hu, J. Zhang, Z. Liu, B. Han, Highly efficient electrochemical reduction of CO2 to CH4 in an ionic liquid using a metalorganic framework cathode, Chem. Sci. 7(2016) 266-273. [72] X. Liu, H. Yang, J. He, H. Liu, L. Song, L. Li, J. Luo, Highly active, durable ultrathin MoTe2 layers for the electroreduction of CO2 to CH4, Small 14(2018) 1704049-1704055. [73] X. Sun, Q. Zhu, X. Kang, H. Liu, Q. Qian, J. Ma, Z. Zhang, G. Yang, B. Han, Design of a Cu(i)/C-doped boron nitride electrocatalyst for efficient conversion of CO2 into acetic acid, Green Chem. 19(2017) 2086-2091. [74] R.F. Zarandi, B. Rezaei, H.S. Ghaziaskar, A.A. Ensafi, Electrochemical reduction of CO2 to ethanol using copper nanofoam electrode and 1-butyl-3-methylimidazolium bromide as the homogeneous co-catalyst, J. Environ. Chem. Eng. 7(2019) 103141-103147. [75] W. Wang, H. Ning, Z. Yang, Z. Feng, J. Wang, X. Wang, Q. Mao, W. Wu, Q. Zhao, H. Hu, Y. Song, M. Wu, Interface-induced controllable synthesis of Cu2O nanocubes for electroreduction CO2 to C2H4, Electrochim. Acta 306(2019) 360-365. [76] J. Tamura, A. Ono, Y. Sugano, C. Huang, H. Nishizawa, S. Mikoshiba, Electrochemical reduction of CO2 to ethylene glycol on imidazolium ionterminated self-assembly monolayer-modified au electrodes in an aqueous solution, Phys. Chem. Chem. Phys. 17(2015) 26072-26078. [77] C. Du, P. Lu, N. Tsubaki, Efficient and new production methods of chemicals and liquid fuels by carbon monoxide hydrogenation, ACS Omega 5(2020) 49-56. [78] Y. An, T. Lin, F. Yu, Y. Yang, L. Zhong, M. Wu, Y. Sun, Advances in direct production of value-added chemicals via syngas conversion, Sci. China-Chem. 60(2017) 887-903. [79] B.A. Rosen, W. Zhu, G. Kaul, A. Salehi-Khojin, R.I. Masel, Water enhancement of CO2 conversion on silver in 1-ethyl-3-methylimidazolium tetrafluoroborate, J. Electrochem. Soc. 160(2013) 138-141. [80] L. Sun, G.K. Ramesha, P.V. Kamat, J.F. Brennecke, Switching the reaction course of electrochemical CO2 reduction with ionic liquids, Langmuir 30(2014) 6302-6308. [81] A.V. Rudnev, K. Kiran, P. Broekmann, Specific cation adsorption:Exploring synergistic effects on CO2 electroreduction in ionic liquids, Chemelectrochem 7(2020) 1897-1903. [82] J. Choi, T.M. Benedetti, R. Jalili, A. Walker, G.G. Wallace, D.L. Officer, High performance Fe porphyrin/ionic liquid co-catalyst for electrochemical CO2 reduction, Chem. Eur. J. 22(2016) 14158-14161. [83] T. Pardal, S. Messias, M. Sousa, A.S.R. Machado, C.M. Rangel, D. Nunes, J.V. Pinto, R. Martins, M.N. da Ponte, Syngas production by electrochemical CO2 reduction in an ionic liquid based-electrolyte, J. CO2 Util. 18(2017) 62-72. [84] D.A. Bruzon, J.K. Tiongson, G. Tapang, I.S. Martinez, Electroreduction and solubility of CO2 in methoxy-and nitrile-functionalized imidazolium (fap) ionic liquids, J. Appl. Electrochem. 47(2017) 1251-1260. [85] S.-F. Zhao, M. Horne, A.M. Bond, J. Zhang, Is the imidazolium cation a unique promoter for electrocatalytic reduction of carbon dioxide? J. Phys. Chem. C 120(2016) 23989-24001. [86] A.V. Rudnev, Y.C. Fu, I. Gjuroski, F. Stricker, J. Furrer, N. Kovacs, S. Vesztergom, P. Broekmann, Transport matters:Boosting CO2 electroreduction in mixtures of[Bmim] [BF4]/water by enhanced diffusion, Chemphyschem 18(2017) 3153-3162. [87] S. Messias, M.M. Sousa, M. Nunes da Ponte, C.M. Rangel, T. Pardal, A.S. Reis Machado, Electrochemical production of syngas from CO2 at pressures up to 30 bar in electrolytes containing ionic liquid, React. Chem. Eng. 4(2019) 1982-1990. [88] S.J. Lue, N.Y. Liu, S.R. Kumar, K.C.Y. Tseng, B.Y. Wang, C.H. Leung, Experimental and one-dimensional mathematical modeling of different operating parameters in direct formic acid fuel cells, Energies 10(2017) 1972-1985. [89] J. Qiao, Y. Liu, F. Hong, J. Zhang, A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels, Chem. Soc. Rev. 43(2014) 631-675. [90] Z. Chen, X. Wang, L. Liu, Electrochemical reduction of carbon dioxide to valueadded products:The electrocatalyst and microbial electrosynthesis, Chem. Rec. 19(2019) 1272-1282. [91] Y.L. Wang, B. Li, S. Sarman, F. Mocci, Z.Y. Lu, J. Yuan, A. Laaksonen, M.D. Fayer, Microstructural and dynamical heterogeneities in ionic liquids, Chem. Rev. 120(2020) 5798-5877. [92] X. Kang, X. Sun, X. Ma, P. Zhang, Z. Zhang, Q. Meng, B. Han, Synthesis of hierarchical porous metals using ionic-liquid-based media as solvent and template, Angew. Chem. Int. Ed. Engl. 56(2017) 12683-12686. [93] P. Tamilarasan, S. Ramaprabhu, Task-specific functionalization of graphene for use as a cathode catalyst support for carbon dioxide conversion, J. Mater. Chem. A 3(2015) 797-804. [94] P. Tamilarasan, S. Ramaprabhu, A polymerized ionic liquid functionalized cathode catalyst support for a proton exchange membrane CO2 conversion cell, RSC Adv. 5(2015) 24864-24871. [95] G. Iijima, T. Kitagawa, A. Katayama, T. Inomata, H. Yamaguchi, K. Suzuki, K. Hirata, Y. Hijikata, M. Ito, H. Masuda, CO2 reduction promoted by imidazole supported on a phosphonium-type ionic-liquid-modified au electrode at a low overpotential, ACS Catal. 8(2018) 1990-2000. [96] D. Niu, H. Wang, H. Li, Z. Wu, X. Zhang, Roles of ion pairing on electroreduction of carbon dioxide based on imidazolium-based salts, Electrochim. Acta 158(2015) 138-142. [97] Y. Wang, M. Hatakeyama, K. Ogata, M. Wakabayashi, F. Jin, S. Nakamura, Activation of CO2 by ionic liquid Emim-BF4 in the electrochemical system:A theoretical study, Phys. Chem. Chem. Phys. 17(2015) 23521-23531. [98] Y. Danten, M.I. Cabaco, J.A.P. Coutinho, N. Pinaud, M. Besnard, DFT study of the reaction mechanisms of carbon dioxide and its isoelectronic molecules CS2 and OCS dissolved in pyrrolidinium and imidazolium acetate ionic liquids, J. Phys. Chem. B 120(2016) 5243-5254. [99] M.I. Cabaco, M. Besnard, Y. Danten, J.A.P. Coutinho, Carbon dioxide in 1-butyl-3-methylimidazolium acetate, i. Unusual solubility investigated by raman spectroscopy and dft calculations, J. Phys. Chem. A 116(2012) 1605-1620. [100] M.B. Shiflett, D.J. Kasprzak, C.P. Junk, A. Yokozeki, Phase behavior of carbon dioxide+[Bmim] [Ac] mixtures, J. Chem. Thermodyn. 40(2008) 25-31. [101] Z. Kelemen, B. Peter-Szabo, E. Szekely, O. Holloczki, D.S. Firaha, B. Kirchner, J. Nagy, L. Nyulaszi, An abnormal N-heterocyclic carbene-carbon dioxide adduct from imidazolium acetate ionic liquids:The importance of basicity, Chem. Eur. J. 20(2014) 13002-13008. [102] J. Qiu, Y. Zhao, Z. Li, H. Wang, M. Fan, J. Wang, Efficient ionic-liquid-promoted chemical fixation of CO2 into alpha-alkylidene cyclic carbonates, Chemsuschem 10(2017) 1120-1127. [103] C. Moya, V. Sabater, G. Yague, M. Larriba, J. Palomar, CO2 conversion to cyclic carbonates catalyzed by ionic liquids with aprotic heterocyclic anions:DFT calculations and operando FTIR analysis, J. CO2 Util. 28(2018) 66-72. [104] M.A. Ziaee, Y. Tang, H. Zhong, D. Tian, R. Wang, Urea-functionalized imidazolium-based ionic polymer for chemical conversion of CO2 into organic carbonates, ACS Sustain. Chem. Eng. 7(2019) 2380-2387. [105] S. Yu, P.K. Jain, Plasmonic photosynthesis of C1-C3 hydrocarbons from carbon dioxide assisted by an ionic liquid, Nat. Commun. 10(2019) 2022-2028. [106] M. Urushihara, K. Chan, C. Shi, J.K. Norskov, Theoretical study of Emim+ adsorption on silver electrode surfaces, J. Phys. Chem. C 119(2015) 20023-20029. [107] J.T. Feaster, A.L. Jongerius, X. Liu, M. Urushihara, S.A. Nitopi, C. Hahn, K. Chan, J.K. Norskov, T.F. Jaramillo, Understanding the influence of[Emim]Cl on the suppression of the hydrogen evolution reaction on transition metal electrodes, Langmuir 33(2017) 9464-9471. [108] Y. Wang, T. Hayashi, D. He, Y. Li, F. Jin, R. Nakamura, A reduced imidazolium cation layer serves as the active site for electrochemical carbon dioxide reduction, Appl. Catal. B -Environ. 264(2020) 118495-118501. [109] C. Dai, Y. Yang, A. Fisher, Z. Liu, D. Cheng, Interaction of CO2 with metal cluster-functionalized ionic liquids, J.CO2 Util. 16(2016) 257-263. [110] K.E.A. Batista, V.K. Ocampo-Restrepo, M.D. Soares, M.G. Quiles, M.J. Piotrowski, J.L.F. Da Silva, Ab initio investigation of CO2 adsorption on 13-atom 4d clusters, J. Chem. Inf. Model 60(2020) 537-545. [111] D. Yang, Q. Zhu, X. Sun, C. Chen, W. Guo, G. Yang, B. Han, Electrosynthesis of a defective indium selenide with 3d structure on a substrate for tunable CO2 electroreduction to syngas, Angew. Chem. Int. Ed. 59(2020) 2354-2359. [112] B.L. Bhargava, Y. Yasaka, M.L. Klein, Hydrogen evolution from formic acid in an ionic liquid solvent:A mechanistic study by ab initio molecular dynamics, J. Phys. Chem. B 115(2011) 14136-14140. [113] O. Holloczki, D.S. Firaha, J. Friedrich, M. Brehm, R. Cybik, M. Wild, A. Stark, B. Kirchner, Carbene formation in ionic liquids:Spontaneous, induced, or prohibited?, J. Phys. Chem. B 117(2013) 5898-5907. [114] K. Klyukin, V. Alexandrov, CO2 adsorption and reactivity on rutile TiO2(110) in water:An Ab initio molecular dynamics study, J. Phys. Chem. C 121(2017) 10476-10483. [115] V.K. Ocampo-Restrepo, L. Zibordi-Besse, J.L.F. Da Silva, Ab initio investigation of the atomistic descriptors in the activation of small molecules on 3d transition-metal 13-atom clusters:The example of H2, CO, H2O, and CO2, J. Chem. Phys. 151(2019) 214301-214311. [116] T. He, L. Zhang, G. Kour, A. Du, Electrochemical reduction of carbon dioxide on precise number of Fe atoms anchored graphdiyne, J. CO2 Util. 37(2020) 272-277. [117] H.-K. Lim, Y. Kwon, H.S. Kim, J. Jeon, Y.-H. Kim, J.-A. Lim, B.-S. Kim, J. Choi, H. Kim, Insight into the microenvironments of the metal-ionic liquid interface during electrochemical CO2 reduction, ACS Catal. 8(2018) 2420-2427. [118] X. Tan, X. Liu, X. Yao, Y. Zhang, K. Jiang, Theoretical study of ionic liquid clusters catalytic effect on the fixation of CO2, Ind. Eng. Chem. Res. 58(2019) 34-43. [119] J. Medina-Ramos, W. Zhang, K. Yoon, P. Bai, A. Chemburkar, W. Tang, A. Atifi, S.S. Lee, T.T. Fister, B.J. Ingram, J. Rosenthal, M. Neurock, A.C.T. van Duin, P. Fenter, Cathodic corrosion at the bismuth-ionic liquid electrolyte interface under conditions for CO2 reduction, Chem. Mater. 30(2018) 2362-2373. [120] H. Yang, D. Zheng, J. Zhang, K. Chen, J. Li, L. Wang, J. Zhang, H. He, S. Zhang, Protic quaternary ammonium ionic liquids for catalytic conversion of CO2 into cyclic carbonates:A combined ab initio and md study, Ind. Eng. Chem. Res. 57(2018) 7121-7129. [121] J.-D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, Phys. Chem. Chem. Phys. 10(2008) 6615-6620. [122] Y. Zhao, D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements:Two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Acc. 120(2008) 215-241. [123] A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic-behavior, Phys. Rev. A 38(1988) 3098-3100. [124] J.P. Perdew, W. Yue, Accurate and simple density functional for the electronic exchange energy-generalized gradient approximation, Phys. Rev. B 33(1986) 8800-8802. [125] A. Schafer, C. Huber, R. Ahlrichs, Fully optimized contracted gaussian-basis sets of triple zeta valence quality for atoms Li to Kr, J. Chem. Phys. 100(1994) 5829-5835. |
[1] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release[J]. 中国化学工程学报, 2023, 60(8): 37-45. |
[2] | Jiahao Lu, Zhimeng Wang, Qi Zhang, Cheng Sun, Yanyan Zhou, Sijia Wang, Xiangyun Qiu, Shoudong Xu, Rentian Chen, Tao Wei. The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries[J]. 中国化学工程学报, 2023, 60(8): 80-89. |
[3] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk[J]. 中国化学工程学报, 2023, 60(8): 143-154. |
[4] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling[J]. 中国化学工程学报, 2023, 59(7): 105-117. |
[5] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage[J]. 中国化学工程学报, 2023, 59(7): 169-175. |
[6] | Zhonghao Li, Yuanyuan Yang, Huanong Cheng, Yun Teng, Chao Li, Kangkang Li, Zhou Feng, Hongwei Jin, Xinshun Tan, Shiqing Zheng. Measurement and model of density, viscosity, and hydrogen sulfide solubility in ferric chloride/trioctylmethylammonium chloride ionic liquid[J]. 中国化学工程学报, 2023, 59(7): 210-221. |
[7] | Chen Chen, Qiong Tang, Hong Xu, Mingxing Tang, Xuekuan Li, Lei Liu, Jinxiang Dong. Alkyl-tetralin base oils synthesized from coal-based chemicals and evaluation of their lubricating properties[J]. 中国化学工程学报, 2023, 58(6): 20-28. |
[8] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure[J]. 中国化学工程学报, 2023, 58(6): 355-363. |
[9] | Jixiang Liu, Xin Zhou, Gengfei Yang, Hui Zhao, Zhibo Zhang, Xiang Feng, Hao Yan, Yibin Liu, Xiaobo Chen, Chaohe Yang. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas[J]. 中国化学工程学报, 2023, 57(5): 290-308. |
[10] | Shaojun Niu, Guobin Zhu, Kai Wu, Honghe Zheng. The feasibility for natural graphite to replace artificial graphite in organic electrolyte with different film-forming additives[J]. 中国化学工程学报, 2023, 56(4): 58-69. |
[11] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface[J]. 中国化学工程学报, 2023, 56(4): 266-272. |
[12] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s[J]. 中国化学工程学报, 2023, 55(3): 202-211. |
[13] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2[J]. 中国化学工程学报, 2023, 55(3): 212-221. |
[14] | Mengge Shang, Jing Zhang, Jinqiang Sun, Shimo Yu, Feng Hua, Xiaoxu Xuan, Xun Sun, Serguei Filatov, Xibin Yi. Amine-functionalized mesoporous UiO-66 aerogel for CO2 adsorption[J]. 中国化学工程学报, 2023, 54(2): 36-43. |
[15] | Jialei Sha, Chenyi Liu, Zhihong Ma, Weizhong Zheng, Weizhen Sun, Ling Zhao. Understanding the interfacial behaviors of benzene alkylation with butene using chloroaluminate ionic liquid catalyst: A molecular dynamics simulation[J]. 中国化学工程学报, 2023, 54(2): 44-52. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||