[1] Y.Q. Yang, Z.W. Fang, X. Chen, W.W. Zhang, Y.M. Xie, Y.H. Chen, Z.G. Liu, W.E. Yuan, An overview of Pickering emulsions: Solid-particle materials, classification, morphology, and applications, Front. Pharmacol. 8(2017) 287. [2] Y.F. Xia, J. Wu, W. Wei, Y.Q. Du, T. Wan, X.W. Ma, W.Q. An, A.Y. Guo, C.Y. Miao, H. Yue, S.G. Li, X.T. Cao, Z.G. Su, G.H. Ma, Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination, Nat. Mater. 17(2018) 187-194. [3] A. Azuar, H.Y.R. Madge, J.C. Boer, J.L. Gonzalez Cruz, J. Wang, Z.G. Khalil, C. Deceneux, G. Goodchild, J. Yang, P. Koirala, W.M. Hussein, R.J. Capon, M. Plebanski, I. Toth, M. Skwarczynski, Poly(hydrophobic amino acids) and liposomes for delivery of vaccine against group A streptococcus, Vaccines 10(8) (2022) 1212. [4] J. Liu, X.D. Yan, X.Q. Li, Y.H. Du, L.L. Zhu, T.T. Ye, Z.Y. Cao, Z.W. Dong, S.T. Li, X. Xu, W. Bai, D. Li, J.W. Zhang, S.J. Wang, S.H. Li, J. Sun, X.Z. Yin, Chrysanthemum sporopollenin: A novel vaccine delivery system for nasal mucosal immunity, Front. Immunol. 14(2023) 1132129. [5] L.S. Ming, H.L. Wu, A. Liu, A. Naeem, Z.S. Dong, Q.M. Fan, G.C. Zhang, H.N. Liu, Z. Li, Evolution and critical roles of particle properties in Pickering emulsion: A review, J. Mol. Liq. 388(2023) 122775. [6] J. Pielenhofer, J. Sohl, M. Windbergs, P. Langguth, M.P. Radsak, Current progress in particle-based systems for transdermal vaccine delivery, Front. Immunol. 11(2020) 266. [7] Y.L. Ming, Y.F. Xia, G.H. Ma, Aggregating particles on the O/W interface: Tuning Pickering emulsion for the enhanced drug delivery systems, Aggregate 3(2) (2022) e162. [8] A. Schudel, D.M. Francis, S.N. Thomas, Material design for lymph node drug delivery, Nat. Rev. Mater. 4(6) (2019) 415-428. [9] T.T. Song, Y.F. Xia, Y.Q. Du, M.W. Chen, H. Qing, G.H. Ma, Engineering the deformability of albumin-stabilized emulsions for lymph-node vaccine delivery, Adv. Mater. 33(26) (2021) e2100106. [10] J.J. Chen, Z.F. Ye, C.F. Huang, M. Qiu, D.H. Song, Y.M. Li, Q.B. Xu, Lipid nanoparticle-mediated lymph node-targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response, Proc. Natl. Acad. Sci. USA 119(34) (2022) e2207841119. [11] G.P. Howard, N.G. Bender, P. Khare, B. Lopez-Gutierrez, V. Nyasembe, W.J. Weiss, J.W. Simecka, T. Hamerly, H.Q. Mao, R.R. Dinglasan, Immunopotentiation by lymph-node targeting of a malaria transmission-blocking nanovaccine, Front. Immunol. 12(2021) 729086. [12] H. Qin, R.F. Zhao, Y.T. Qin, J. Zhu, L. Chen, C.Z. Di, X.X. Han, K.M. Cheng, Y.L. Zhang, Y. Zhao, J. Shi, G.J. Anderson, Y.L. Zhao, G.J. Nie, Development of a cancer vaccine using in vivo click-chemistry-mediated active lymph node accumulation for improved immunotherapy, Adv. Mater. 33(20) (2021) e2006007. [13] P. Baluk, J. Fuxe, H. Hashizume, T. Romano, E. Lashnits, S. Butz, D. Vestweber, M. Corada, C. Molendini, E. Dejana, D.M. McDonald, Functionally specialized junctions between endothelial cells of lymphatic vessels, J. Exp. Med. 204(10) (2007) 2349-2362. [14] J.W. Breslin, Mechanical forces and lymphatic transport, Microvasc. Res. 96(2014) 46-54. [15] A.R. Gillies, R.L. Lieber, Structure and function of the skeletal muscle extracellular matrix, Muscle Nerve 44(3) (2011) 318-331. [16] S. Jalkanen, M. Salmi, Lymphatic endothelial cells of the lymph node, Nat. Rev. Immunol. 20(9) (2020) 566-578. [17] K.N. Margaris, R.A. Black, Modelling the lymphatic system: Challenges and opportunities, J. R. Soc. Interface 9(69) (2012) 601-612. [18] J.P. Nederveen, M.W. Betz, T. Snijders, G. Parise, The importance of muscle capillarization for optimizing satellite cell plasticity, Exerc. Sport Sci. Rev. 49(4) (2021) 284-290. [19] L.H. Nicoll, A. Hesby, Intramuscular injection: An integrative research review and guideline for evidence-based practice, Appl. Nurs. Res. 15(3) (2002) 149-162. [20] O. Ohtani, Y. Ohtani, C.J. Carati, B.J. Gannon, Fluid and cellular pathways of rat lymph nodes in relation to lymphatic labyrinths and Aquaporin-1 expression, Arch. Histol. Cytol. 66(3) (2003) 261-272. [21] F. Zhang, G. Zarkada, S.J. Yi, A. Eichmann, Lymphatic endothelial cell junctions: Molecular regulation in physiology and diseases, Front. Physiol. 11(2020) 509. [22] E. Mendoza, G.W. Schmid-Schonbein, A model for mechanics of primary lymphatic valves, J. Biomech. Eng. 125(3) (2003) 407-414. [23] N.P. Reddy, K. Patel, A mathematical model of flow through the terminal lymphatics, Med. Eng. Phys. 17(2) (1995) 134-140. [24] N.Q. Gong, Y.X. Zhang, Z. Zhang, X.L. Li, X.J. Liang, Functional nanomaterials optimized to circumvent tumor immunological tolerance, Adv. Funct. Mater. 29(3) (2019) 1806087. [25] D.A. Fedosov, B. Caswell, G.E. Karniadakis, A multiscale red blood cell model with accurate mechanics, rheology, and dynamics, Biophys. J. 98(10) (2010) 2215-2225. [26] N. Liu, M. Becton, L.Y. Zhang, X.Q. Wang, Mechanism of coupling nanoparticle stiffness with shape for endocytosis: From rodlike penetration to wormlike wriggling, J. Phys. Chem. B 124(49) (2020) 11145-11156. [27] W. Pan, A.M. Tartakovsky, Dissipative particle dynamics model for colloid transport in porous media, Adv. Water Resour. 58(2013) 41-48. [28] L. Zhou, S.L. Feng, H.T. Liu, J.Z. Chang, Dissipative particle dynamics simulation of cell entry into a micro-channel, Eng. Anal. Bound. Elem. 107(2019) 47-52. [29] H.J. Liu, Y. Sun, C.A. Simmons, Determination of local and global elastic moduli of valve interstitial cells cultured on soft substrates, J. Biomech. 46(11) (2013) 1967-1971. [30] I.V. Pivkin, G.E. Karniadakis, Accurate coarse-grained modeling of red blood cells, Phys. Rev. Lett. 101(11) (2008) 118105. [31] P.J. Hoogerbrugge, J.M.V.A. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics, Europhys. Lett. 19(3) (1992) 155-160. [32] J.M.V.A. Koelman, P.J. Hoogerbrugge, Dynamic simulations of hard-sphere suspensions under steady shear, Europhys. Lett. 21(3) (1993) 363-368. [33] X.J. Fan, N. Phan-Thien, S. Chen, X.H. Wu, T. Yong Ng, Simulating flow of DNA suspension using dissipative particle dynamics, Phys. Fluids 18(6) (2006) 063102. [34] D.A. Fedosov, G.E. Karniadakis, B. Caswell, Dissipative particle dynamics simulation of depletion layer and polymer migration in micro- and nanochannels for dilute polymer solutions, J. Chem. Phys. 128(14) (2008) 144903. [35] P. Espanol, P. Warren, Statistical mechanics of dissipative particle dynamics, Europhys. Lett. 30(4) (1995) 191-196. [36] P. Espanol, Fluid particle model, Phys. Rev. E 57(3) (1998) 2930-2948. [37] W. Pan, D.A. Fedosov, G.E. Karniadakis, B. Caswell, Hydrodynamic interactions for single dissipative-particle-dynamics particles and their clusters and filaments, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4 Pt 2) (2008) 046706. [38] W. Pan, I.V. Pivkin, G.E. Karniadakis, Single-particle hydrodynamics in DPD: A new formulation, Europhys. Lett. 84(1) (2008) 10012. [39] D.E. Discher, D.H. Boal, S.K. Boey, Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration, Biophys. J. 75(3) (1998) 1584-1597. [40] J. Li, M. Dao, C.T. Lim, S. Suresh, Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte, Biophys. J. 88(5) (2005) 3707-3719. [41] D.A. Fedosov, G. Gompper, White blood cell margination in microcirculation, Soft Matter 10(17) (2014) 2961-2970. [42] A. Yazdani, Y. Deng, H. Li, E. Javadi, Z. Li, S. Jamali, C. Lin, J.D. Humphrey, C.S. Mantzoros, G.E. Karniadakis, Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood, J. R. Soc. Interface 18(175) (2021) 20200834. [43] M. Razizadeh, M. Nikfar, R. Paul, Y.L. Liu, Coarse-grained modeling of pore dynamics on the red blood cell membrane under large deformations, Biophys. J. 119(3) (2020) 471-482. [44] X. Shi, G. Lin, J.F. Zou, D.A. Fedosov, A lattice Boltzmann fictitious domain method for modeling red blood cell deformation and multiple-cell hydrodynamic interactions in flow, Int. J. Numer. Meth. Fluids 72(8) (2013) 895-911. [45] A.L. Blumers, Y.H. Tang, Z. Li, X.J. Li, G.E. Karniadakis, GPU-accelerated red blood cells simulations with transport dissipative particle dynamics, Comput. Phys. Commun. 217(2017) 171-179. [46] C. Pozrikidis, Computational hydrodynamics of capsules and biological cells. Boca Raton, FL: CRC Press, (2010). [47] M.P. Allen, D.J. Tildesley, Computer simulation of liquids, Second edition, Oxford University Press, Oxford, United Kingdom, 2017. [48] M. Dao, J. Li, S. Suresh, Molecularly based analysis of deformation of spectrin network and human erythrocyte, Mater. Sci. Eng. C 26(8) (2006) 1232-1244. [49] B. Liu, X. Qiu, How to compute the atomic stress objectively? J. Comput. Theor. Nanos. 6 (5) (2008) 1082-1089. [50] L.L. Zhang, J. Jasa, G. Gazonas, A. Jerusalem, M. Negahban, Extracting continuum-like deformation and stress from molecular dynamics simulations, Comput. Meth. Appl. Mech. Eng. 283(2015) 1010-1031. [51] Y.H. Tang, G.E. Karniadakis, Accelerating dissipative particle dynamics simulations on GPUs: Algorithms, numerics and applications, Comput. Phys. Commun. 185(11) (2014) 2809-2822. [52] P.O. Persson, G. Strang, A simple mesh generator in MATLAB, SIAM Rev. 46(2) (2004) 329-345. [53] S. Eloul, E. Katelhon, R.G. Compton, When does near-wall hindered diffusion influence mass transport towards targets? Phys. Chem. Chem. Phys. 18(38) (2016) 26539-26549. [54] M. Gonzalez-Melchor, E. Mayoral, M.E. Velazquez, J. Alejandre, Electrostatic interactions in dissipative particle dynamics using the Ewald sums, J. Chem. Phys. 125(22) (2006) 224107. [55] R.D. Groot, Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants, J. Chem. Phys. 118(24) (2003) 11265-11277. [56] A. Gubbiotti, M. Chinappi, C.M. Casciola, EH-DPD: A dissipative particle dynamics approach to electrohydrodynamics, Eur. Phys. J. Plus 137(5) (2022) 572. [57] J. Smiatek, F. Schmid, Mesoscopic simulations of electroosmotic flow and electrophoresis in nanochannels, Comput. Phys. Commun. 182(9) (2011) 1941-1944. |