[1] A.L. Harvey, R. Edrada-Ebel, R.J. Quinn, The re-emergence of natural products for drug discovery in the genomics era, Nat. Rev. Drug Discov. 14 (2) (2015) 111–129. [2] D.J. Newman, G.M. Cragg, Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019, J. Nat. Prod. 83 (3) (2020) 770–803. [3] A.S.T. Wong, C.M. Che, K.W. Leung, Recent advances in ginseng as cancer therapeutics: A functional and mechanistic overview, Nat. Prod. Rep. 32 (2) (2015) 256–272. [4] M. Riaz, N.U. Rahman, M. Zia-Ul-Haq, H.Z.E. Jaffar, R. Manea, Ginseng: A dietary supplement as immune-modulator in various diseases, Trends Food Sci. Tech. 83 (2019) 12–30. [5] J.K. Patra, G. Das, S. Lee, S.S. Kang, H.S. Shin, Selected commercial plants: A review of extraction and isolation of bioactive compounds and their pharmacological market value, Trends Food Sci. Tech. 82 (2018) 89–109. [6] K.W. Leung, A.S. Wong, Pharmacology of ginsenosides: A literature review, Chin. Med. 5 (2010) 20–27. [7] X.H. Xu, T. Li, C.M.V. Fong, X.P. Chen, X.J. Chen, Y.T. Wang, M.Q. Huang, J.J. Lu, Saponins from chinese medicines as anticancer agents, Molecules 21 (10) (2016) 1590–1660. [8] D.H. Kim, Chemical Diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng, J. Ginseng Res. 36 (1) (2012) 1–15. [9] L.L. Qu, Y.Y. Zhu, Y.N. Liu, H.X. Yang, C.H. Zhu, P. Ma, J.J. Deng, D.D. Fan, Protective effects of ginsenoside Rk3 against chronic alcohol-induced liver injury in mice through inhibition of inflammation, oxidative stress, and apoptosis, Food Chem. Toxicol. 126 (2019) 277–284. [10] Y.N. Liu, D.D. Fan, Ginsenoside Rg5 induces apoptosis and autophagy via the inhibition of the PI3K/Akt pathway against breast cancer in a mouse model, Food Funct. 9 (11) (2018) 5513–5527. [11] Y.N. Liu, D.D. Fan, The preparation of ginsenoside Rg5, its antitumor activity against breast cancer cells and its targeting of PI3k, Nutrients 12 (1) (2020) 246–265. [12] Y. Liu, J.J. Deng, D.D. Fan, Ginsenoside rk3 ameliorates high-fat-diet/streptozocin induced type 2 diabetes mellitus in mice via the ampk/akt signaling pathway, Food Funct. 10 (5) (2019) 2538–2551. [13] Y. Wei, H. Yang, C. Zhu, J. Deng, D. Fan, Hypoglycemic effect of ginsenoside rg5 mediated partly by modulating gut microbiota dysbiosis in diabetic db/db mice, J. Agric. Food Chem. 68 (18) (2020) 5107–5117. [14] B. Wei, Z.G. Duan, C.H. Zhu, J.J. Deng, D.D. Fan, Anti-anemia effects of ginsenoside rk3 and ginsenoside Rh4 on mice with ribavirin-induced anemia, Food Funct. 9 (4) (2018) 2447–2455. [15] J.J. Shao, X.Y. Zheng, L.L. Qu, H. Zhang, H.F. Yuan, J.F. Hui, Y. Mi, P. Ma, D.D. Fan, Ginsenoside Rg5/Rk1 ameliorated sleep via regulating the gabaergic/serotoninergic signaling pathway in a rodent model, Food Funct. 11 (2) (2020) 1245–1257. [16] W. Li, Y. Jiang, Y. Liu, C. Li, D. Fan, Biocatalytic strategies in producing ginsenoside by glycosidase-A review, Chin. J. Biotechnol. 35 (9) (2019) 1590–1606. [17] M.Y. Sun, Y. Ye, L. Xiao, X.Y. Duan, Y.M. Zhang, H. Zhang, Anticancer effects of ginsenoside Rg3 (review), Int. J. Mol. Med. 39 (3) (2017) 507–518. [18] Z.G. Yuan, H. Jiang, X.H. Zhu, X.G. Liu, J.H. Li, Ginsenoside Rg3 promotes cytotoxicity of paclitaxel through inhibiting nf-kappa b signaling and regulating bax/bcl-2 expression on triple-negative breast cancer, Biomed. Pharmacother. 89 (2017) 227–232. [19] J.J. Wang, L.L. Tian, M.N. Khan, L. Zhang, Q. Chen, Y. Zhao, Q. Yan, L. Fu, J.W. Liu, Ginsenoside Rg3 sensitizes hypoxic lung cancer cells to cisplatin via blocking of NF-kappa B mediated epithelial-mesenchymal transition and sternness, Cancer Lett. 415 (2018) 73–85. [20] S. Chian, Y. Zhao, M. Xu, X.L. Yu, X. Ke, R.L. Gao, L.M. Yin, Ginsenoside Rd reverses cisplatin resistance in non-small-cell lung cancer A549 cells by downregulating the nuclear factor erythroid 2-related factor 2 pathway, Anticancer Drugs 30 (8) (2019) 838–845. [21] S. Chae, K.A. Kang, W.Y. Chang, M.J. Kim, S.J. Lee, Y.S. Lee, H.S. Kim, D.H. Kim, J. W. Hyun, Effect of compound k, a metabolite of ginseng saponin, combined with gamma-ray radiation in human lung cancer cells in vitro and in vivo, J. Agric. Food Chem. 57 (13) (2009) 5777–5782. [22] K.Q. Zhang, Y.W. Li, Effects of ginsenoside compound k combined with cisplatin on the proliferation, apoptosis and epithelial mesenchymal transition in mcf-7 cells of human breast cancer, Pharm. Biol. 54 (4) (2016) 561–568. [23] L. Chen, Y. Meng, Q. Sun, Z.Y. Zhang, X.Q. Guo, X.T. Sheng, G.H. Tai, H.R. Cheng, Y.F. Zhou, Ginsenoside compound K sensitizes human colon cancer cells to trail-induced apoptosis via autophagy-dependent and -independent dr5 upregulation, Cell Death Dis. 7 (2016) e2334. [24] H. Kim, J.H. Lee, J.E. Kim, Y.S. Kim, C.H. Ryu, H.J. Lee, H.M. Kim, H. Jeon, H.J. Won, J.Y. Lee, J. Lee, Micro-/nano-sized delivery systems of ginsenosides for improved systemic bioavailability, J. Ginseng Res. 42 (3) (2018) 361–369. [25] H.J. Won, H.I. Kim, T. Park, H. Kim, K. Jo, H. Jeon, S.J. Ha, J.M. Hyun, A. Jeong, J.S. Kim, Y.J. Park, Y.H. Eo, J. Lee, Non-clinical pharmacokinetic behavior of ginsenosides, J. Ginseng Res. 43 (3) (2019) 354–360. [26] C.A. Lipinski, Drug-like properties and the causes of poor solubility and poor permeability, J Pharmacol. Tox. Met. 44 (1) (2000) 235–249. [27] C.A. Lipinski, F. Lombardo, B.W. Dominy, P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev. 46 (1–3) (2001) 3–26. [28] E.S. Swenson, W.J. Curatolo, Intestinal permeability enhancement for proteins, peptides and other polar drugs –mechanisms and potential toxicity, Adv. Drug Deliv. Rev. 8 (1) (1992) 39–92. [29] X.D. Yang, Y.Y. Yang, D.S. Ouyang, G.P. Yang, A review of biotransformation and pharmacology of ginsenoside compound K, Fitoterapia 100 (2015) 208–220. [30] T.X. Qian, Z.W. Cai, R.N.S. Wong, N.K. Mak, Z.H. Jiang, In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg(3), J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 816 (1–2) (2005) 223–232. [31] M. Peng, X.N. Li, T. Zhang, Y. Ding, Y.X. Yi, J. Le, Y.J. Yang, X.J. Chen, Stereoselective pharmacokinetic and metabolism studies of 20(s)-and 20(r)-ginsenoside Rg(3) epimers in rat plasma by liquid chromatographyelectrospray ionization mass spectrometry, J. Pharm. Biomed. Anal. 121 (2016) 215–224. [32] S. Pintusophon, W. Niu, X.N. Duan, O.E. Olaleye, Y.H. Huang, F.Q. Wang, Y.F. Li, J.L. Yang, C. Li, Intravenous formulation of Panax notoginseng root extract: human pharmacokinetics of ginsenosides and potential for perpetrating drug interactions, Acta Pharmacol. Sin. 40 (2019) 1351–1363. [33] Y. Li, H. Wang, R. Wang, X. Lu, Y. Wang, M. Duan, H. Li, X. Fan, S. Wang, Pharmacokinetics, tissue distribution and excretion of saponins after intravenous administration of ShenMai Injection in rats, J. Chromatogr. B 1128 (1) (2019) 121777–121787. [34] J. Ma, X.L. Li, J.F. Tang, X.L. Meng, F. Meng, P. Liu, Pharmacokinetic study on ginsenoside Rg1 and Re in rats following intravenous and oral administration of “Shenmai” injection, Int. J Clin. Exp. Med. 9 (5) (2012) 8355–8361. [35] L. Yang, S.J. Xu, Z.F. Wu, Y.M. Liu, X. Zeng, Determination of ginsenoside-Rg1 in human plasma and its application to pharmacokinetic studies following intravenous administration of ‘Shenmai’ injection, Phytother. Res. 23 (2009) 65–71. [36] W. Tang, Y. Zhang, J. Gao, X. Ding, S. Gao, The anti-fatigue effect of 20(R)-ginsenoside Rg3 in mice by intranasally administration, Biol. Pharm. Bull. 31 (11) (2008) 2024–2027. [37] K. Law, X. Sha, X. Fang, Preparation of Panax notoginseng saponins ionsensitive in situ nasal gel, Chin. Tradition. Herb. Drug. 42 (7) (2011) 1299–1304. [38] J. Xiong, M. Sun, J. Guo, L. Huang, S. Wang, B. Meng, Q. Ping, Enhancement by adrenaline of ginsenoside Rg1 transport in Caco-2 cells and oral absorption in rats, J. Pharm. Pharmacol. 61 (3) (2009) 347–352. [39] X.M. Chen, J.B. Zhu, W.D. Sun, L.J. Zhang, Effect of absorption enhancer of borneol on Ginsenoside Rg1 and the nasal ciliotoxicity, Chin. Pharm. J. 41 (4) (2006) 261–264. [40] M. Zhou, Y. Gu, S.Q. Zhang, R.S. Xia, K.Q. Fang, Effects of azone on transdermal absorption of ginsenoside Rg1 and minoxidil, J. Fourth Mil. Med. Univ. 25 (10) (2004) 958–960. [41] D. Zhang, C. Wang, W. Han, X.Y. Yang, Y. Qu, X.M. Cui, Y. Yang, Promotion on in vitro percutaneous absorption of trace ginsenoside Rh1 using imidazole type-ionic liquids, Chin. Tradition. Herb. Drug. 45 (20) (2014) 2917–2923. [42] B.S. Pattni, V.V. Chupin, V.P. Torchilin, New developments in liposomal drug delivery, Chem. Rev. 115 (19) (2015) 10938–10966. [43] X. Jin, J.P. Zhou, Z.H. Zhang, H.X. Lv, The combined administration of parthenolide and ginsenoside ck in long circulation liposomes with targeted tlyp-1 ligand induce mitochondria-mediated lung cancer apoptosis, Artif. Cell Nanomed. Biotechnol. 46 (2018) S931–S942. [44] L. Yang, J. Xin, Z.H. Zhang, H.M. Yan, J. Wang, E. Sun, J. Hou, X.B. Jia, H.X. Lv, TPGS-modified liposomes for the delivery of ginsenoside compound K against non-small cell lung cancer: Formulation design and its evaluation in vitro and in vivo, J Pharm. Pharmacol. 68 (9) (2016) 1109–1118. [45] J. Xiong, J.X. Guo, L.S. Huang, B.Y. Meng, Q.N. Ping, Self-micelle formation and the incorporation of lipid in the formulation affect the intestinal absorption of panax notoginseng, Int. J. Pharmaceut. 360 (1–2) (2008) 191–196. [46] L. Dai, K.F. Liu, C.L. Si, L.Y. Wang, J. Liu, J. He, J.D. Lei, Ginsenoside nanoparticle: A new green drug delivery system, J. Mater. Chem. B 4 (3) (2016) 529–538. [47] X.Y. Zhou, D. Qu, M. Guo, C. Fan, T. Zhou, Y. Ling, Preliminary study on fabrication, characterization and synergistic anti-lung cancer effects of selfassembled micelles of covalently conjugated celastrol-polyethylene glycolginsenoside Rh2, Drug Deliv. 24 (1) (2017) 834–845. [48] L. Yang, Z.H. Zhang, J. Hou, X. Jin, Z.C. Ke, D. Liu, M. Du, X.B. Jia, H.X. Lv, Targeted delivery of ginsenoside compound K using TPGS/PEG-PCL mixed micelles for effective treatment of lung cancer, Int. J. Nanomed. 12 (2017) 7653–7667. [49] X.M. Su, D.S. Zhang, H.W. Zhang, K.Y. Zhao, W.S. Hou, Preparation and characterization of angiopep-2 functionalized ginsenoside-rg3 loaded nanoparticles and the effect on c6 glioma cells, Pharmaceut. Dev. Technol. 25 (3) (2020) 385–395. [50] J.M. Zhan, Y.Y. Jiang, Y.P. Li, W.B. Li, J. Zhou, J.W. Chen, Z. Shang, Q. Gu, W. Wang, T. Shen, W.C. Hu, Micelles modified with a chitosan-derived homing peptide for targeted intracellular delivery of ginsenoside compound k to liver cancer cells, Carbohyd. Polym. 230 (2020) 115576–115588. [51] Y.N. Dong, R.Z. Fu, J. Yang, P. Ma, L.H. Liang, Y. Mi, D.D. Fan, Folic acid-modified ginsenoside Rg5-loaded bovine serum albumin nanoparticles for targeted cancer therapy in vitro and in vivo, Int. J. Nanomed. 14 (2019) 6971–6988. [52] R. Yang, D.Z. Chen, M.F. Li, F.Q. Miao, P.D. Liu, Q.S. Tang, 20 (s)-ginsenoside Rg3-loaded magnetic human serum albumin nanospheres applied to hela cervical cancer cells in vitro, Bio-Med. Mater. Eng. 24 (6) (2014) 1991–1998. [53] Y. Park, A.R. Im, E.J. Joo, J. Lee, H.G. Park, Y.H. Kang, R.J. Linhardt, Y.S. Kim, Conjugation of ginsenoside Rg3 with gold nanoparticles, Bull. Korean Chem. Soc. 32 (1) (2011) 286–290. [54] Y.J. Kim, H. Perumalsamy, J. Markus, S.R. Balusamy, C. Wang, S.H. Kang, S. Lee, S.Y. Park, S. Kim, V. Castro-Aceituno, S.H. Kim, D.C. Yang, Development of Lactobacillus kimchicus DCY51Tmediated gold nanoparticles for delivery of ginsenoside compound K: in vitro photothermal effects and apoptosis detection in cancer cells, Artif. Cell. Nanomed. Biotech. 47 (1) (2019) 30–44. [55] Z.G. Ren, X.M. Chen, L.J. Hong, X.X. Zhao, G.Y. Cui, A. Li, Y. Liu, L.N. Zhou, R.R. Sun, S. Shen, J. Li, J.M. Lou, H.Q. Zhou, J.M. Wang, G.W. Xu, Z.J. Yu, Y.J. Song, X.H. Chen, Nanoparticle conjugation of ginsenoside Rg3 inhibits hepatocellular carcinoma development and metastasis, Small 16 (2) (2020) 1905233–1905247. [56] L.Y. Cheng, X.M. Sun, B. Li, C.M. Hu, H.L. Yang, Y.G. Zhang, W.G. Cui, Electrospun ginsenoside Rg3/poly(lactic-co-glycolic acid) fibers coated with hyaluronic acid for repairing and inhibiting hypertrophic scars, J. Mater. Chem. B 1 (35) (2013) 4428–4437. [57] X.M. Sun, L.Y. Cheng, W.K. Zhu, C.M. Hu, R. Jin, B.S. Sun, Y.M. Shi, Y.G. Zhang, W. G. Cui, Use of ginsenoside rg3-loaded electrospun plga fibrous membranes as wound cover induces healing and inhibits hypertrophic scar formation of the skin, Colloid. Surf. B-Biointerfaces 115 (2014) 61–70. [58] L.Y. Cheng, X.M. Sun, X. Zhao, L. Wang, J. Yu, G.Q. Pan, B. Li, H.L. Yang, Y.G. Zhang, W.G. Cui, Surface biofunctional drug-loaded electrospun fibrous scaffolds for comprehensive repairing hypertrophic scars, Biomaterials 83 (2016) 169–181. [59] T. Xu, R. Yang, X. Ma, W. Chen, S. Liu, X. Liu, X. Cai, H. Xu, B. Chi, Bionic poly (gamma-glutamic acid) electrospun fibrous scaffolds for preventing hypertrophic scars, Adv. Healthc. Mater. 8 (13) (2019) e1900123. [60] T. Zheng, J.J. Huang, Y.G. Jiang, Q.Q. Tang, Y. Liu, Z.J. Xu, X.W. Wu, J.N. Ren, Sandwich-structure hydrogels implement on-demand release of multiple therapeutic drugs for infected wounds, RSC Adv. 9 (72) (2019) 42489–42497. [61] M.H. Sun, C.N. Zhu, J.Y. Long, C. Lu, X. Pan, C.B. Wu, PLGA microsphere-based composite hydrogel for dual delivery of ciprofloxacin and ginsenoside Rh2 to treat staphylococcus aureus-induced skin infections, Drug Deliv. 27 (1) (2020) 632–641. [62] K.T. Kim, M.H. Kim, J.H. Park, J. Younglee, H.J. Cho, I.S. Yoon, D.D. Kim, Microemulsion-based hydrogels for enhancing epidermal/dermal deposition of topically administered 20(s)-protopanaxadiol: In vitro and in vivo evaluation studies, J. Ginseng Res. 42 (4) (2018) 512–523. [63] Y.R. Zheng, Z.Z. Feng, C.G. You, Y.Y. Jin, X.L. Hu, X.G. Wang, C.M. Han, In vitro evaluation of panax notoginseng Rg1 released from collagen/chitosan-gelatin microsphere scaffolds for angiogenesis, Biomed. Eng. Online 12 (2013) 134–150. [64] V.R. Akoev, R.E. Elemesov, B.S. Abdrasilov, Y.A. Kim, H.J. Park, Effects of triterpenoid glycosides of the dammaran series and their aglicons on phase transitions of dipalmitoylphosphatidylcholane, Biologicheskie Membrany 13 (6) (1996) 605–611. [65] C. Hong, D. Wang, J.M. Liang, Y.Z. Guo, Y. Zhu, J.X. Xia, J. Qin, H.X. Zhan, J.X. Wang, Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer, Theranostics 9 (15) (2019) 4437–4449. [66] M.S. Li, J. Lan, X.F. Li, M. Xin, H. Wang, F. Zhang, X.H. Lu, Z.F. Zhuang, X.G. Wu, Novel ultra-small micelles based on ginsenoside rb1: A potential nanoplatform for ocular drug delivery, Drug Deliv. 26 (1) (2019) 481–489. [67] R. Mathiyalagan, S. Subramaniyam, Y.J. Kim, S. Natarajan, J.W. Min, S.Y. Kim, D. C. Yang, Synthesis and pharmacokinetic characterization of a ph-sensitive polyethylene glycol ginsenoside CK (PEG-CK) conjugate, Biosci. Biotechnol. Biochem. 78 (3) (2014) 466–468. [68] B. Zhang, X.M. Zhu, J.N. Hu, H. Ye, T. Luo, X.R. Liu, H.Y. Li, W. Li, Y.N. Zheng, Z.Y. Deng, Absorption mechanism of ginsenoside compound k and its butyl and octyl ester prodrugs in Caco-2 cells, J. Agric. Food Chem. 60 (41) (2012) 10278–10284. [69] S. Biswas, P. Kumari, P.M. Lakhani, B. Ghosh, Recent advances in polymeric micelles for anti-cancer drug delivery, Eur. J. Pharm. Sci. 83 (2016) 184–202. [70] S. Voruganti, J.J. Qin, S. Sarkar, S. Nag, I.A. Walbi, S. Wang, Y.Q. Zhao, W. Wang, R.W. Zhang, Oral nano-delivery of anticancer ginsenoside 25-och3-ppd, a natural inhibitor of the mdm2 oncogene: Nanoparticle preparation, characterization, in vitro and in vivo anti-prostate cancer activity, and mechanisms of action, Oncotarget 6 (25) (2015) 21379–21394. [71] J.J. Shi, P.W. Kantoff, R. Wooster, O.C. Farokhzad, Cancer nanomedicine: Progress, challenges and opportunities, Nat. Rev. Cancer 17 (1) (2017) 20–37. [72] J.M. Zhang, Y.J. Wang, Y.Y. Jiang, T.W. Liu, Y.Y. Luo, E.J. Diao, Y.F. Cao, L. Chen, L. Zhang, Q. Gu, J.Y. Zhou, F.T. Sun, W.C. Zheng, J.X. Liu, X.Q. Li, W.C. Hu, Enhanced cytotoxic and apoptotic potential in hepatic carcinoma cells of chitosan nanoparticles loaded with ginsenoside compound K, Carbohyd. Polym. 198 (2018) 537–545. [73] M.T. Larsen, M. Kuhlmann, M.L. Hvam, K.A. Howard, Albumin-based drug delivery: Harnessing nature to cure disease, Mol. Cell. Ther. 4 (2016) 3–3. [74] Y.L. Tan, H.K. Ho, Navigating albumin-based nanoparticles through various drug delivery routes, Drug Discov. Today 23 (5) (2018) 1108–1114. [75] D. Bobo, K.J. Robinson, J. Islam, K.J. Thurecht, S.R. Corrie, Nanoparticle-based medicines: A review of fda-approved materials and clinical trials to date, Pharmaceut. Res. 33 (10) (2016) 2373–2387. [76] N. Khlebtsov, L. Dykman, Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies, Chem. Soc. Rev. 40 (3) (2011) 1647–1671. [77] A. Albanese, P.S. Tang, W.C.W. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems, Ann. Rev. Biomed. Eng. 14 (2012) 1–16. [78] L.Y. Cheng, X.M. Sun, C.M. Hu, R. Jin, B.S. Sun, Y.M. Shi, L. Zhang, W.G. Cui, Y.G. Zhang, In vivo inhibition of hypertrophic scars by implantable ginsenosideRg3-loaded electrospun fibrous membranes, Acta Biomater. 9 (12) (2013) 9461–9473. [79] J.J. Xue, T. Wu, Y.Q. Dai, Y.N. Xia, Electrospinning and electrospun nanofibers: Methods, materials, and applications, Chem. Rev. 119 (8) (2019) 5298–5415. |