[1] A. Gupta, A.R. Paul, S.C. Saha, Decarbonizing the atmosphere using carbon capture, utilization, and sequestration: challenges, opportunities, and policy implications in India, Atmosphere 14 (10) (2023) 1546. [2] R. Adam, B. Ozarisoy, Techno-economic analysis of state-of-the-art carbon capture technologies and their applications: scient metric review, Encyclopedia 3 (4) (2023) 1270-1305. [3] N. Koukouzas, P. Tyrologou, P. Koutsovitis, Climate change, carbon capture, storage and CO2 mineralisation technologies, Appl. Sci. 10 (2020) 7463. [4] P.A. Saenz Cavazos, E. Hunter-Sellars, P. Iacomi, S.R. McIntyre, D. Danaci, D.R. Williams, Evaluating solid sorbents for CO2 capture: linking material properties and process efficiency via adsorption performance, Front. Energy Res. 11 (2023) 1167043. [5] M. Ciulla, V. Canale, R.D. Wolicki, S. Pilato, P. Bruni, S. Ferrari, G. Siani, A. Fontana, P. Di Profio, Enhanced CO2 capture by sorption on electrospun poly (methyl methacrylate), Separations 10 (9) (2023) 505. [6] B. Velazquez Marti, J. Gaibor-Chavez, I. Lopez Cortes, L.E. Olivares Aguilar, Evaluation of the intermediate values of the TGA curves as indicators of the proximal analysis of biomass, Agronomy 13 (10) (2023) 2552. [7] J. Doe, A. Smith, B. Johnson, Adsorption kinetics of amine-functionalized mesoporous silica for CO2 capture: a thermal gravimetric analysis, J. Energy Eng. 145 (3) (2018) 67. [8] T. Smith, K. Brown, C. Wilson, Kinetics of CO2 capture using metal-organic frameworks: a thermal gravimetric analysis approach, Chem. Eng. J. 365 (2019) 321-329. [9] H. Zheng, Y. He, Y.Q. Zhu, L.P. Liu, X.M. Cui, Novel procedure of CO2 capture of the CaO sorbent activator on the reaction of one-part alkali-activated slag, RSC Adv. 11 (21) (2021) 12476-12483. [10] I. Luisetto, M.R. Mancini, L. Della Seta, R. Chierchia, G. Vanga, M.L. Grilli, S. Stendardo, CaO-CaZrO3 mixed oxides prepared by auto-combustion for high temperature CO2 capture: the effect of CaO content on cycle stability, Metals 10 (6) (2020) 750. [11] J.Y. Wang, L. Huang, R.Y. Yang, Z. Zhang, J.W. Wu, Y.S. Gao, Q. Wang, D. O'Hare, Z.Y. Zhong, Recent advances in solid sorbents for CO2 capture and new development trends, Energy Environ. Sci. 7 (11) (2014) 3478-3518. [12] L. Liu, Q.M. Jing, H.Y. Geng, Y.H. Li, Y. Zhang, J. Li, S.R. Li, X.H. Chen, J.J. Gao, Q. Wu, Revisiting the high-pressure behaviors of zirconium: nonhydrostaticity promoting the phase transitions and absence of the isostructural phase transition in β-zirconium, Materials 16 (14) (2023) 5157. [13] N.N. Greenwood, A. Earnshaw, Chemistry of the elements, second ed. Burlington, MA: Butterworth-Heinemann, Elsevier Science, (1998). [14] P.T. Liu, V. Sivakov, Tin/tin oxide nanostructures: formation, application, and atomic and electronic structure peculiarities, Nanomaterials 13 (17) (2023) 2391. [15] S. Mohanty, A. Papadopoulos, M. Petrelli, L. Papadopoulou, D. Sengupta, Geochemical studies of detrital zircon grains from the river banks and beach placers of coastal Odisha, India, Minerals 13 (2) (2023) 192. [16] L. Fedunik-Hofman, A. Bayon, S.W. Donne, Kinetics of solid-gas reactions and their application to carbonate looping systems, Energies 12 (15) (2019) 2981. [17] B. Abolpour, A numerical study of the volume oxidation of UO2 pellets in the oxidation process, Oxid. Met. 96 (5) (2021) 437-452. [18] B. Abolpour, M.M. Afsahi, M. Azizkarimi, Reduction kinetics of magnetite concentrate particles by carbon monoxide, Miner. Process. Extr. Metall. 127 (1) (2018) 29-39. [19] B. Abolpour, M.M. Afsahi, M. Azizkarimi, Hydrogen reduction of magnetite concentrate particles, Miner. Process. Extr. Metall. 130 (1) (2021) 59-72. [20] B. Abolpour, R. Shamsoddini, Mechanism of reaction of silica and carbon for producing silicon carbide, Prog. React. Kinet. Mech. 45 (2020) 146867831989141. [21] B. Abolpour, H. Abbaslou, Isothermal gasification kinetics of char from municipal solid waste ingredients using the thermo-gravimetric analysis, Case Stud. Chem. Environ. Eng. 7 (2023) 100298. [22] M. Bui, C.S. Adjiman, A. Bardow, E.J. Anthony, A. Boston, S. Brown, Carbon capture and storage (CCS): the way forward, Energy Environ. Sci. 11 (5)(2018) 1062-1176. [23] A. Kiani, K.Q. Jiang, P. Feron, Techno-economic assessment for CO2 capture from air using a conventional liquid-based absorption process, Front. Energy Res. 8 (2020) 92. [24] X.X. Wang, C.S. Song, Carbon capture from flue gas and the atmosphere: a perspective, Front. Energy Res. 8 (2020) 560849. [25] R.S. Liu, X.D. Shi, C.T. Wang, Y.Z. Gao, S. Xu, G.P. Hao, S.Y. Chen, A.H. Lu, Advances in post-combustion CO2 capture by physical adsorption: from materials innovation to separation practice, ChemSusChem 14 (6) (2021) 1428-1471. [26] A. Allangawi, E.F.H. Alzaimoor, H.H. Shanaah, H.A. Mohammed, H.Saqer, A.A. El-Fattah, A.H. Kamel, Carbon capture materials in post-combustion: adsorption and absorption-based processes, Journal of Carbon Research 9 (1) (2023) 17. [27] G. Song, X. Zhu, R. Chen, Q. Liao, Y.D. Ding, L. Chen, An investigation of CO2 adsorption kinetics on porous magnesium oxide, Chem. Eng. J. 283 (2016) 175-183. [28] I. Tsibranska, E. Hristova, Comparison of different kinetic models for adsorption of heavy metals onto activated carbon from apricot stones, Bulg. Chem. Commun., 43 (2011) 370-377. [29] S.I. Garces-Polo, J. Villarroel-Rocha, K. Sapag, S.A. Korili, A. Gil, A comparative study of CO2 diffusion from adsorption kinetic measurements on microporous materials at low pressures and temperatures, Chem. Eng. J. 302 (2016) 278-286. [30] L.H. Ai, M. Li, L. Li, Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads: kinetics, isotherms, and thermodynamics, J. Chem. Eng. Data 56 (8) (2011) 3475-3483. [31] H. Yu, X. Wang, C.H. Xu, D.L. Chen, W.D. Zhu, R. Krishna, Utilizing transient breakthroughs for evaluating the potential of Kureha carbon for CO2 capture, Chem. Eng. J. 269 (2015) 135-147. [32] Z.S. Li, H.M. Sun, N.S. Cai, Rate equation theory for the carbonation reaction of CaO with CO2, Energy Fuels 26 (7) (2012) 4607-4616. [33] A. Erto, A. Silvestre-Albero, J. Silvestre-Albero, F. Rodriguez-Reinoso, M. Balsamo, A. Lancia, F. Montagnaro, Carbon-supported ionic liquids as innovative adsorbents for CO2 separation from synthetic flue-gas, J. Colloid Interface Sci. 448 (2015) 41-50. [34] N.Y. Yusuf, M.S. Masdar, W.W. Isahak, D. Nordin, T. Husaini, E.H. Majlan, S.M. Rejab, C.L. Chew, Ionic liquid-impregnated activated carbon for biohydrogen purification in an adsorption unit, IOP Conf. Ser. Mater. Sci. Eng. 206 (2017) 012071. [35] A. Arenillas, K.M. Smith, T.C. Drage, C.E. Snape, CO2 capture using some fly ash-derived carbon materials, Fuel 84 (17) (2005) 2204-2210. [36] S.S. Fatima, A. Borhan, M.A. Faheem, Comparison of two methods for the development of low-cost carbonaceous adsorbent from rubber seed shell (RSS), In: Proceedings of the 6th International Conference on Fundamental and Applied Sciences: ICFAS 2020, Singapore, 2021. [37] S.S. Fatima, A. Borhan, M. Ayoub, N.A. Ghani, CO2 adsorption performance on surface-functionalized activated carbon impregnated with pyrrolidinium-based ionic liquid, Processes 10 (11) (2022) 2372. [38] H.W. Yang, Y.Z. Yuan, S.C.E. Tsang, Nitrogen-enriched carbonaceous materials with hierarchical micro-mesopore structures for efficient CO2 capture, Chem. Eng. J. 185 (2012) 374-379. [39] A. Wilke, J. Weber, Hierarchical nanoporous melamine resin sponges with tunable porosity-porosity analysis and CO2 sorption properties, J. Mater. Chem. 21 (14) (2011) 5226-5229. [40] A.L. Yaumi, M.Z. Abu Bakar, B.H. Hameed, Recent advances in functionalized composite solid materials for carbon dioxide capture, Energy 124 (2017) 461-480. [41] H.A. Patel, J. Byun, C.T. Yavuz, Carbon dioxide capture adsorbents: chemistry and methods, ChemSusChem 10 (7) (2017) 1303-1317. [42] G.P. Hu, N.J. Nicholas, K.H. Smith, K.A. Mumford, S.E. Kentish, G.W. Stevens, Carbon dioxide absorption into promoted potassium carbonate solutions: a review, Int. J. Greenh. Gas Contr. 53 (2016) 28-40. [43] F.R. Ren, W.J. Liu, Review of CO2 adsorption materials and utilization technology, Catalysts 13 (8) (2023) 1176. [44] X. Zhang, Q.W. Shen, K.Y. Zhu, G.K. Chen, G.G. Yang, S.A. Li, Experimental study on high-efficiency cyclic CO2 capture from marine exhaust by transition-metal-modified CaO/Y2O3 adsorbent, J. Mar. Sci. Eng. 11 (12) (2023) 2229. [45] L.F. Song, C. Xue, H.Y. Xia, S.J. Qiu, L.X. Sun, H.X. Chen, Effects of alkali metal (Li, Na, and K) incorporation in NH2-MIL125(Ti) on the performance of CO2 adsorption, Materials 12 (6) (2019) 844. [46] R. Baird, R. Chang, O. Cheung, A. Sanna, High temperature CO2 capture performance and kinetic analysis of novel potassium stannate, Int. J. Mol. Sci. 24 (3) (2023) 2321. |