[1] A. Puleo, D. Paul, P. Wong, Gas sorption and transport in semicrystalline poly(4-methyl-1-pentene), Polymer 30 (7) (1989) 1357-1366. [2] I. Michaljanicova, P. Slepicka, N. Slepickova Kasalkova, P. Sajdl, V. Svorcik, Plasma and laser treatment of PMP for biocompatibility improvement, Vacuu 107 (2014) 184-190. [3] E.J. Samuel, S. Mohan, FTIR and FT Raman spectra and analysis of poly(4-methyl-1-pentene), Spectrochim. Acta A Mol. Biomol. Spectrosc. 60 (1-2) (2004) 19-24. [4] G.J. Peek, H.M. Killer, R. Reeves, A.W. Sosnowski, R.K. Firmin, Early experience with a polymethyl pentene oxygenator for adult extracorporeal life support, ASAIO J. 48 (5) (2002) 480-482. [5] R.J. Leonard, The transition from the bubble oxygenator to the microporous membrane oxygenator, Perfusion 18 (3) (2003) 179-183. [6] A.H. Mostafavi, A. K. Mishra, M. Ulbricht, J.F.M. Denayer, S.S. Hosseini, Oxygenation and membrane oxygenators: Emergence, evolution and progress in material development and process enhancement for biomedical applications, J. Membr. Sci. Res. 7 (2021) 230-259. [7] S. Markova, M. Shalygin, M. Pelzer, T. Gries, V. Teplyakov, Application prospects of dense gas separation hollow fibers based on poly(4-methyl-1-pentene), Chem. Pap. 74 (2020) 1917-1921. [8] B.J. Cha, J.M. Yang, Preparation of poly(vinylidene fluoride) hollow fiber membranes for microfiltration using modified TIPS process, J. Membr. Sci. 291 (1-2) (2007) 191-198. [9] K.H. Lee, S. Givens, D.B. Chase, J.F. Rabolt, Electrostatic polymer processing of isotactic poly(4-methyl-1-pentene) fibrous membrane, Polymer 47 (23) (2006) 8013-8018. [10] T.Q. Zhang, Z.Q. Jia, W.J. Peng, S.D. Li, J.P. Wen, Preparation of 4-methyl-1-pentene membranes via non-solvent induced phase separation (NIPS), Eur. Polym. J. 178 (2022) 111480. [11] L.H. Zhi, S.Y. Li, X.Q. He, Y.B. Feng, C. Cheng, S. Li, S.D. Sun, C.S. Zhao, In-situ modified polyethersulfone oxygenation membrane with improved hemocompatibility and gas transfer efficiency, J. Membr. Sci. 667 (2023) 121162. [12] S. Horton, C. Thuys, M. Bennett, S. Augustin, M. Rosenberg, C. Brizard, Experience with the jostra rotaflow and QuadroxD oxygenator for ECMO, Perfusion 19 (1) (2004) 17-23. [13] T. Yeager, S. Roy, Evolution of gas permeable membranes for extracorporeal membrane oxygenation, Artif. Organs 41 (8) (2017) 700-709. [14] L. Lequier, S.B. Horton, D.M. McMullan, R.H. Bartlett, Extracorporeal membrane oxygenation circuitry, Pediatr. Crit. Care Med. 14 (5 Suppl 1) (2013) S7-S12. [15] S. Agati, G. Ciccarello, N. Fachile, R.M. Scappatura, D. Grasso, D. Salvo, A. Undar, C. Mignosa, DIDECMO: A new polymethylpentene oxygenator for pediatric extracorporeal membrane oxygenation, ASAIO J. 52 (5) (2006) 509-512. [16] G.R. Guillen, Y.J. Pan, M.H. Li, E.M.V. Hoek, Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review, Ind. Eng. Chem. Res. 50 (7) (2011) 3798-3817. [17] S. Kawahito, T. Motomura, J. Glueck, Y. Nose, Development of a new hollow fiber silicone membrane oxygenator for ECMO: The recent progress, Ann. Thorac. Cardiovasc. Surg. 8 (5) (2002) 268-274. [18] X.Y. Hong, J. Xiong, Z.C. Feng, Y. Shi, Extracorporeal membrane oxygenation (ECMO): Does it have a role in the treatment of severe COVID-19? Int. J. Infect. Dis. 94 (2020) 78-80. [19] C.L. Huang, Y.M. Wang, X.W. Li, L. Ren, J.P. Zhao, Y. Hu, L. Zhang, G.H. Fan, J.Y. Xu, X.Y. Gu, Z.S. Cheng, T. Yu, J.A. Xia, Y. Wei, W.J. Wu, X.L. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J.G. Xie, G.F. Wang, R. Jiang, Z.C. Gao, Q. Jin, J.W. Wang, B. Cao, Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet Lond. Engl. 395 (2020) 497-506. [20] D.W. Wang, B. Hu, C. Hu, F.F. Zhu, X. Liu, J. Zhang, B.B. Wang, H. Xiang, Z.S. Cheng, Y. Xiong, Y. Zhao, Y.R. Li, X.H. Wang, Z.Y. Peng, Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China, JAMA 323 (11) (2020) 1061-1069. [21] R.H. Bartlett, Extracorporeal life support in the management of severe respiratory failure, Clin. Chest Med. 21 (3) (2000) 555-561. [22] A.J. Michaels, R.J. Schriener, S. Kolla, S.S. Awad, P.B. Rich, C. Reickert, J. Younger, R.B. Hirschl, R.H. Bartlett, Extracorporeal life support in pulmonary failure after trauma, J. Trauma 46 (4) (1999) 638-645. [23] S. Kato, S. Morimoto, S. Hiramitsu, M. Nomura, T. Ito, H. Hishida, Use of percutaneous cardiopulmonary support of patients with fulminant myocarditis and cardiogenic shock for improving prognosis, Am. J. Cardiol. 83 (4) (1999) 623-625, A10. [24] M.R. Hemmila, S.A. Rowe, T.N. Boules, J. Miskulin, J.W. McGillicuddy, D.J. Schuerer, J.W. Haft, F. Swaniker, S. Arbabi, R.B. Hirschl, R.H. Bartlett, Extracorporeal life support for severe acute respiratory distress syndrome in adults, Ann. Surg. 240 (4) (2004) 595-605. [25] L. Gattinoni, A. Pesenti, D. Mascheroni, R. Marcolin, R. Fumagalli, F. Rossi, G. Iapichino, G. Romagnoli, L. Uziel, A. Agostoni, Low-frequency positive-pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure, JAMA 256 (7) (1986) 881-886. [26] S.H. Ye, D.T. Arazawa, Y. Zhu, V. Shankarraman, A.D. Malkin, J.D. Kimmel, L.J. Gamble, K. Ishihara, W.J. Federspiel, W.R. Wagner, Hollow fiber membrane modification with functional zwitterionic macromolecules for improved thromboresistance in artificial lungs, Langmuir 31 (8) (2015) 2463-2471. [27] D.R. Lloyd, K.E. Kinzer, H.S. Tseng, Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation, J. Membr. Sci. 52 (3) (1990) 239-261. [28] M.H. Nematollahi, A.H.S. Dehaghani, R. Abedini, CO2/CH4 separation with poly(4-methyl-1-pentyne) (TPX) based mixed matrix membrane filled with Al2O3 nanoparticles, Korean J. Chem. Eng. 33 (2) (2016) 657-665. [29] M.B. Johnson, G.L. Wilkes, Microporous membranes of isotactic poly(4-methyl-1-pentene) from a melt-extrusion process. I. Effects of resin variables and extrusion conditions, J. Appl. Polym. Sci. 83 (10) (2002) 2095-2113. [30] M.B. Johnson, G.L. Wilkes, Microporous membranes of isotactic poly(4-methyl-1-pentene) from a melt-extrusion process. II. Effects of thermal annealing and stretching on porosity, J. Appl. Polym. Sci. 84 (5) (2002) 1076-1100. [31] V.V. Teplyakov, Diffusion of C1-C3 alkanes in semicrystalline poly(4-methyl-1-pentene) as a two-phase polymeric system, Int. J. Membr. Sci. Technol. 4 (1) (2017) 28-36. [32] H. Yoshimizu, H. Fukatsu, T. Suzuki, Y. Tsujita, T. Kinoshita, CO2 permeation and diffusion properties of semicrystalline poly(4-methyl pentene-1) membranes, Polym. J. 30 (12) (1998) 981-984. [33] Q. Zhang, Y.Q. Zhang, D.W. Xia, Y. Zhao, Y.Q. Shi, Q.Z. Jiao, Preparation of a porous structure in a poly(4-methyl-1-pentene)/diphenyl ether system with a thermally induced phase-separation method, J. Appl. Polym. Sci. 112 (3) (2009) 1271-1277. [34] H.J. Tao, J. Zhang, X.L. Wang, J.L. Gao, Phase separation and polymer crystallization in a poly(4-methyl-1-pentene)-dioctylsebacate-dimethylphthalate system via thermally induced phase separation, J. Polym. Sci. Part B Polym. Phys. 45 (2) (2007) 153-161. [35] H.J. Tao, J. Zhang, X.L. Wang, Effect of diluents on the crystallization behavior of poly(4-methyl-1-pentene) and membrane morphology via thermally induced phase separation, J. Appl. Polym. Sci. 108 (2) (2008) 1348-1355. [36] M.W. Lim, The history of extracorporeal oxygenators, Anaesthesia 61 (10) (2006) 984-995. [37] H.J. Cho, D.W. Kim, G.S. Kim, I.S. Jeong, Anticoagulation therapy during extracorporeal membrane oxygenator support in pediatric patients, Chonnam Med. J. 53 (2) (2017) 110-117. [38] H.J. Tao, Q. Xia, S. Jun, J. Zhang, X. Wang, Solid-liquid phase separation of poly-4-methyl-1-pentene/diluent system via thermally induced phase separation, Desalin. Water Treat. 17 (1-3) (2010) 294-303. [39] J.L. Wang, Z.K. Xu, Y.Y. Xu, Preparation of poly(4-methyl-1-pentene) asymmetric or microporous hollow-fiber membranes by melt-spun and cold-stretch method, J. Appl. Polym. Sci. 100 (3) (2006) 2131-2141. [40] Z.Y. Cui, C.H. Du, Y.Y. Xu, G.L. Ji, B.K. Zhu, Preparation of porous PVdF membrane via thermally induced phase separation using sulfolane, J. Appl. Polym. Sci. 108 (1) (2008) 272-280. [41] X.Y. Wang, L. Zhang, D.H. Sun, Q.F. An, H.L. Chen, Effect of coagulation bath temperature on formation mechanism of poly(vinylidene fluoride) membrane, J. Appl. Polym. Sci. 110 (3) (2008) 1656-1663. [42] S. Wongchitphimon, R. Wang, R. Jiraratananon, L. Shi, C.H. Loh, Effect of polyethylene glycol (PEG) as an additive on the fabrication of polyvinylidene fluoride-co-hexafluropropylene (PVDF-HFP) asymmetric microporous hollow fiber membranes, J. Membr. Sci. 369 (1-2) (2011) 329-338. [43] A. Nakajima, S. Hayashi, T. Taka, Melting behavior of poly-4-methyl-pentene-1 single crystals, Kolloid Z. Und Z. Fur Polym. 233 (1) (1969) 869-878. [44] F.J. Medellin-Rodriguez, P.J. Phillips, J.S. Lin, R. Campos, The triple melting behavior of poly(ethylene terephthalate): Molecular weight effects, J. Polym. Sci. B Polym. Phys. 35 (11) (1997) 1757-1774. [45] F.J. Medellin-Rodriguez, P.J. Phillips, J.S. Lin, C.A. Avila-Orta, Triple melting behavior of poly(ethylene terephthalateco-1, 4-cyclohexylene dimethylene terephthalate) random copolyesters, J. Polym. Sci. B Polym. Phys. 36 (5) (1998) 763-781. [46] S.S. Kim, G.B.A. Lim, A.A. Alwattari, Y.F. Wang, D.R. Lloyd, Microporous membrane formation via thermally-induced phase separation. V. Effect of diluent mobility and crystallization on the structure of isotactic polypropylene membranes, J. Membr. Sci. 64 (1-2) (1991) 41-53. [47] S.S. Kim, D.R. Lloyd, Microporous membrane formation via thermally-induced phase separation. III. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes, J. Membr. Sci. 64 (1-2) (1991) 13-29. [48] O.O. Teber, A.D. Altinay, S.A.N. Mehrabani, R.S. Tasdemir, B. Zeytuncu, E.A. Genceli, E. Dulekgurgen, K. Pekkan, I. Koyuncu, Polymeric hollow fiber membrane oxygenators as artificial lungs: A review, Biochem. Eng. J. 180 (2022) 108340. [49] G.B.A. Lim, S.S. Kim, Q.H. Ye, Y.F. Wang, D.R. Lloyd, Microporous membrane formation via thermally-induced phase separation. IV. Effect of isotactic polypropylene crystallization kinetics on membrane structure, J. Membr. Sci. 64 (1-2) (1991) 31-40. [50] M. Fukuda, Evolutions of extracorporeal membrane oxygenator (ECMO): Perspectives for advanced hollow fiber membrane, J. Artif. Organs 27 (1) (2024) 1-6. [51] Y.H. Tang, M.F. Li, Y.K. Lin, L. Wang, F.Y. Wu, X.L. Wang, A novel green diluent for the preparation of poly(4-methyl-1-pentene) membranes via a thermally-induced phase separation method, Membranes 11 (8) (2021) 622. [52] T.Q. Zhang, S. Hao, J. Xiao, Z.Q. Jia, Preparation of poly(4-methyl-1-pentene) membranes by low-temperature thermally induced phase separation, ACS Appl. Polym. Mater. 5 (3) (2023) 1998-2005. [53] F.C. Lin, D.M. Wang, J.Y. Lai, Asymmetric TPX membranes with high gas flux, J. Membr. Sci. 110 (1) (1996) 25-36. [54] J.Y. Lai, S.L. Wei, Preparation of vinylpyridine irradiation-grafted poly(4-methyl-pentene-1) membrane for oxygen enrichment, J. Appl. Polym. Sci. 32 (7) (1986) 5763-5775. [55] J.Y. Lai, G.J. Wu, S.S. Shyu, TPX/siloxane blend membrane for oxygen enrichment, J. Appl. Polym. Sci. 34 (2) (1987) 559-569. [56] Y. Wang, Y. Liu, Q. Han, H. Lin, F. Liu, A novel poly (4-methyl-1-pentene)/polypropylene (PMP/PP) thin film composite (TFC) artificial lung membrane for enhanced gas transport and excellent hemo-compatibility, J. Membr. Sci. 649 (2022) 120359. [57] Z.M.H. Mohd Shafie, A.L. Ahmad, S. Rode, B. Belaissaoui, D. Roizard, S.C. Low, Prospect of oxyplus hollow fibre membrane with dense polymethylpentene (PMP) skin as support-gutter layer of thin film composite (TFC) for biogas upgrading, J. Phys. Sci. 30 (Supp.2) (2019) 179-189. [58] R. Abedini, A. Mosayebi, M. Mokhtari, Improved CO2 separation of azide cross-linked PMP mixed matrix membrane embedded by nano-CuBTC metal organic framework, Process. Saf. Environ. Prot. 114 (2018) 229-239. [59] M.H. Nematollahi, A.H.S. Dehaghani, V. Pirouzfar, E. Akhondi, Mixed matrix membranes comprising PMP polymer with dispersed alumina nanoparticle fillers to separate CO2/N2, Macromol. Res. 24 (9) (2016) 782-792. |