[1] S. R. Billewar, G. Londhe, World energy demand. in Integrated Green Energy Solutions, John Wiley & Sons, USA (2023). [2] A. Maalouf, A. Mavropoulos, M. El-Fadel, Global municipal solid waste infrastructure: Delivery and forecast of uncontrolled disposal, Waste Manag. Res. 38 (9) (2020) 1028-1036. [3] L. Tang, J. Guo, R.X. Wan, M. Jia, J.B. Qu, L. Li, X. Bo, Air pollutant emissions and reduction potentials from municipal solid waste incineration in China, Environ. Pollut. Barking Essex 319 (2023) 121021. [4] R.F. Li, B.D. Xi, X.W. Wang, Y.J. Li, Y. Yuan, W.B. Tan, Anaerobic oxidation of methane in landfill and adjacent groundwater environments: Occurrence, mechanisms, and potential applications, Water Res. 255 (2024) 121498. [5] D. Costa, T. P. Michele, Technical and environmental assessment of forestry residues valorisation via fast pyrolysis in Ireland. Biomass and Bioenergy 173 (2023)106766. [6] R.C. Nogueira, N.Z. Alexander, Research trends and perspectives on hydrothermal gasification in producing biofuels. Energy Nexus 10 (2023)100199. [7] A. R. Aghamiri, P. Lahijani, Catalytic conversion of biomass and plastic waste to alternative aviation fuels: A review. Biomass and Bioenergy.2024(2024)107120. [8] S.R. Naqvi, A.H. Khoja, I. Ali, M. Naqvi, Recent progress in catalytic deoxygenation of biomass pyrolysis oil using microporous zeolites for green fuels production. Fuel 333 (2023) 126268. [9] B. Iglinski, W. Kujawski, U. Kielkowska, Pyrolysis of Waste Biomass: Technical and Process Achievements, and Future Development-A Review. Energies 16 (2023) 1829. [10] C. T. Alves, J. A. Onwudili, P. Ghorbannezhad, S.Kumagai, A review of the thermochemistries of biomass gasification and utilisation of gas products. Sustainable Energy and Fuels 7(2023) 3505-3540. [11] G. Lourinho, O. Alves, B. Garcia, B. Rijo, P. Brito,C. Nobre, Costs of Gasification Technologies for Energy and Fuel Production: Overview, Analysis, and Numerical Estimation. Recycling 8 (2023) 49. [12] J.P. Ma, S. Shi, X.Q. Jia, F. Xia, H. Ma, J. Gao, J. Xu, Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels, J. Energy Chem. 36 (2019) 74-86. [13] E. Ocampo, V.V. Beltran, E.A. Gomez, L.A. Rios, D. Ocampo, Hydrothermal liquefaction process: review and trends, Curr. Res. Green Sustain. Chem. 7 (2023) 100382. [14] M. Khalekuzzaman, M.A. Fayshal, H.M.F. Adnan, Production of low phenolic naphtha-rich biocrude through co-hydrothermal liquefaction of fecal sludge and organic solid waste using water-ethanol co-solvent, J. Clean. Prod. 436 (2024) 140593. [15] M. Vaishnavi, K.S. Kumar, K.P. Gopinath, Comparative studies on catalytic hydrothermal liquefaction of mixed household waste into bio crude, Biomass Convers. Biorefin. 13 (15) (2023) 14253-14265. [16] M. Vaishnavi, K.P. Gopinath, P.K. Ghodke, Recent advances in hydrothermal liquefaction of microalgae. Verma P, Micro-algae: Next-generation Feedstock for Biorefineries. Singapore: Springer, 2022: 97-127. [17] M. El Bast, N. Allam, Y. Abou Msallem, S. Awad, K. Loubar, A review on continuous biomass hydrothermal liquefaction systems: process design and operating parameters effects on biocrude, J. Energy Inst. 108 (2023) 101260. [18] M. Vaishnavi, K. Sathishkumar, K.P. Gopinath, Hydrothermal liquefaction of composite household waste to biocrude: the effect of liquefaction solvents on product yield and quality, Environ. Sci. Pollut. Res. 31 (27) (2024) 39760-39773. [19] B. Biswas, A. Arun Kumar, Y. Bisht, B.B. Krishna, J. Kumar, T. Bhaskar, Role of temperatures and solvents on hydrothermal liquefaction of Azolla filiculoides, Energy 217 (2021) 119330. [20] S.A. Channiwala, P.P. Parikh, A unified correlation for estimating HHV of solid, liquid and gaseous fuels, Fuel 81 (8) (2002) 1051-1063. [21] Y.Y. Zhao, H. Cao, C.L. Yao, R. Li, Y.L. Wu, Synergistic effects on cellulose and lignite co-pyrolysis and co-liquefaction, Bioresour. Technol. 299 (2020) 122627. [22] S. Mukundan, J.L. Wagner, P.K. Annamalai, D.S. Ravindran, G.K. Krishnapillai, J. Beltramini, Hydrothermal co-liquefaction of biomass and plastic wastes into biofuel: study on catalyst property, product distribution and synergistic effects, Fuel Process. Technol. 238 (2022) 107523. [23] J. Arun, K.P. Gopinath, P. SundarRajan, M. JoselynMonica, V. Felix, Co-liquefaction of Prosopis juliflora with polyolefin waste for production of high grade liquid hydrocarbons, Bioresour. Technol. 274 (2019) 296-301. [24] J. Arun, K.P. Gopinath, D.V N. Vo, P. SundarRajan, M. Swathi, Co-hydrothermal gasification of Scenedesmus sp. with sewage sludge for bio-hydrogen production using novel solid catalyst derived from carbon-zinc battery waste, Bioresour. Technol. Rep. 11 (2020) 100459. [25] J. Mahima, R.K. Sundaresh, K.P. Gopinath, P.S.S. Rajan, J. Arun, S.H. Kim, A. Pugazhendhi, Effect of algae (Scenedesmus obliquus) biomass pre-treatment on bio-oil production in hydrothermal liquefaction (HTL): Biochar and aqueous phase utilization studies, Sci Total Environ 778 (2021) 146262. [26] S. Mishra, K. Mohanty, Co-HTL of domestic sewage sludge and wastewater treatment derived microalgal biomass-An integrated biorefinery approach for sustainable biocrude production, Energy Convers. Manag. 204 (2020) 112312. [27] W.T. Chen, Y. Zhang, J. Zhang, G. Yu, L.C. Schideman, P. Zhang, M. Minarick, Hydrothermal liquefaction of mixed-culture algal biomass from wastewater treatment system into bio-crude oil, Bioresour. Technol. 152 (2014) 130-139. [28] W.T. Chen, J. Ma, Y. Zhang, C. Gai, W. Qian, Physical pretreatments of wastewater algae to reduce ash content and improve thermal decomposition characteristics, Bioresour. Technol. 169 (2014) 816-820. [29] A. Rojas-Perez, D. Diaz-Diestra, C.B. Frias-Flores, J. Beltran-Huarac, K.C. Das, B.R. Weiner, G. Morell, L.M. Diaz-Vazquez, Catalytic effect of ultrananocrystalline Fe3O4 on algal bio-crude production via HTL process, Nanoscale 7 (42) (2015) 17664-17671. [30] M. Audu, H.L. Wang, D. Arellano, F. Cheng, M. Dehghanizadeh, J.M. Jarvis, J.C. Yan, C.E. Brewer, U. Jena, Ash-pretreatment and hydrothermal liquefaction of filamentous algae grown on dairy wastewater, Algal Res. 57 (2021) 102282. [31] W.T. Chen, W.Y. Qian, Y.H. Zhang, Z. Mazur, C.T. Kuo, K. Scheppe, L.C. Schideman, B.K. Sharma, Effect of ash on hydrothermal liquefaction of high-ash content algal biomass, Algal Res. 25 (2017) 297-306. [32] K. Kohansal, E. Lozano Sanchez, S. Khare, K. Oskar Pires Bjoergen, M. Salman Haider, D. Castello, T. Loevas, L. Aistrup Rosendahl, T. Helmer Pedersen, Automotive sustainable diesel blendstock production through biocrude obtained from hydrothermal liquefaction of municipal solid waste, Fuel 350 (2023) 128770. [33] S. Harisankar, R. Vinu, Comprehensive evaluation of municipal solid wastes and mixed feedstocks for commercial hydrothermal liquefaction in bio-refineries, Fuel 339 (2023) 127236. [34] L.H. Zhang, P. Champagne, C. Charles Xu, Bio-crude production from secondary pulp/paper-mill sludge and waste newspaper via co-liquefaction in hot-compressed water, Energy 36 (4) (2011) 2142-2150. [35] H. Nishimura, L. Tan, N. Kira, S. Tomiyama, K. Yamada, Z.Y. Sun, Y.Q. Tang, S. Morimura, K. Kida, Production of ethanol from a mixture of waste paper and kitchen waste via a process of successive liquefaction, presaccharification, and simultaneous saccharification and fermentation, Waste Manag. N Y N Y 67 (2017) 86-94. [36] J. Nallasivam, P.F. Prashanth, R. Vinu, Hydrothermal liquefaction of biomass for the generation of value-added products. Biomass, Biofuels, Biochemicals. Amsterdam: Elsevier, (2022) 65-107. [37] A. Sahoo, K. Saini, M. Jindal, T. Bhaskar, K.K. Pant, Co-Hydrothermal Liquefaction of algal and lignocellulosic biomass: status and perspectives, Bioresour. Technol. 342 (2021) 125948. [38] J.C. Martins-Vieira, D. Lachos-Perez, C.P. Draszewski, D. Celante, F. Castilhos, Sugar, hydrochar and bio-oil production by sequential hydrothermal processing of corn cob, J. Supercrit. Fluids 194 (2023) 105838. [39] Q.W. Fan, P. Fu, C.Y. Song, Y.L. Fan, Valorization of waste biomass through hydrothermal liquefaction: a review with focus on linking hydrothermal factors to products characteristics, Ind. Crops Prod. 191 (2023) 116017. [40] L.J. Leng, W.J. Zhang, H.Y. Peng, H.L. Li, S.J. Jiang, H.J. Huang, Nitrogen in bio-oil produced from hydrothermal liquefaction of biomass: a review, Chem. Eng. J. 401 (2020) 126030. [41] L. Chen, Z.S. Yu, S.W. Fang, M.Q. Dai, X.Q. Ma, Co-pyrolysis kinetics and behaviors of kitchen waste and chlorella vulgaris using thermogravimetric analyzer and fixed bed reactor, Energy Convers. Manag. 165 (2018) 45-52. [42] N. Dutta, A. Gupta, An experimental study on conversion of high-density polyethylene and polypropylene to liquid fuel, Clean Technol. Environ. Policy 23 (7) (2021) 2213-2220. [43] S.A. Hadigheh, Y. Wei, S. Kashi, Optimisation of CFRP composite recycling process based on energy consumption, kinetic behaviour and thermal degradation mechanism of recycled carbon fibre, J. Clean. Prod. 292 (2021) 125994. [44] G. Perkins, N. Batalha, A. Kumar, T. Bhaskar, M. Konarova, Recent advances in liquefaction technologies for production of liquid hydrocarbon fuels from biomass and carbonaceous wastes, Renew. Sustain. Energy Rev. 115 (2019) 109400. [45] B. Motavaf, P.E. Savage, Effect of process variables on food waste valorization via hydrothermal liquefaction, ACS EST Eng. 1 (3) (2021) 363-374. [46] M. Oke, F. Resende, Hydrothermal liquefaction of Saccharina latissima: effects of catalysts, temperature, residence time, and biomass-to-water ratio, Energy Fuels 37 (22) (2023) 17345-17358. [47] J. Rajagopal, K.P. Gopinath, A. Krishnan, N. Vikas Madhav, J. Arun, Photocatalytic reforming of aqueous phase obtained from liquefaction of household mixed waste biomass for renewable bio-hydrogen production, Bioresour Technol 321 (2021) 124529. [48] D. Mahesh, S. Ahmad, R. Kumar, S.R. Chakravarthy, R. Vinu, Hydrothermal liquefaction of municipal solid wastes for high quality bio-crude production using glycerol as co-solvent, Bioresour. Technol. 339 (2021) 125537. [49] R. Saengsuriwong, T. Onsree, S. Phromphithak, N. Tippayawong, Biocrude oil production via hydrothermal liquefaction of food waste in a simplified high-throughput reactor, Bioresour. Technol. 341 (2021) 125750. [50] T.H. Yang, L.P. Shi, R.D. Li, B.S. Li, X.P. Kai, Hydrodeoxygenation of crude bio-oil in situ in the bio-oil aqueous phase with addition of zero-valent aluminum, Fuel Process. Technol. 184 (2019) 65-72. [51] Y. Gao, X.H. Wang, J. Wang, X.P. Li, J.J. Cheng, H.P. Yang, H.P. Chen, Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth, Energy 58 (2013) 376-383. [52] R. Singh, A. Prakash, S.K. Dhiman, B. Balagurumurthy, A.K. Arora, S.K. Puri, T. Bhaskar, Hydrothermal conversion of lignin to substituted phenols and aromatic ethers, Bioresour. Technol. 165 (2014) 319-322. [53] A. Aierzhati, J. Watson, B.C. Si, M. Stablein, T.F. Wang, Y.H. Zhang, Development of a mobile, pilot scale hydrothermal liquefaction reactor: food waste conversion product analysis and techno-economic assessment, Energy Convers. Manag. X 10 (2021) 100076. [54] H. Bayat, M. Dehghanizadeh, J.M. Jarvis, C.E. Brewer, U. Jena, Hydrothermal liquefaction of food waste: effect of process parameters on product yields and chemistry, Front. Sustain. Food Syst. 5 (2021) 658592. [55] W.H. Chen, Y.Y. Lin, H.C. Liu, T.C. Chen, C.H. Hung, C.H. Chen, H.C. Ong, A comprehensive analysis of food waste derived liquefaction bio-oil properties for industrial application, Appl. Energy 237 (2019) 283-291. [56] B. Jin, P. Duan, Y. Xu, F. Wang, Y. Fan, Co-liquefaction of micro- and macroalgae in subcritical water, Bioresour. Technol. 149 (2013) 103-110. [57] W.T. Chen, Y.H. Zhang, J.X. Zhang, L. Schideman, G. Yu, P. Zhang, M. Minarick, Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil, Appl. Energy 128 (2014) 209-216. [58] A. Saba, B. Lopez, J.G. Lynam, M.T. Reza, Hydrothermal liquefaction of loblolly pine: effects of various wastes on produced biocrude, ACS Omega 3 (3) (2018) 3051-3059. [59] D.W.F. Brilman, N. Drabik, M. Wadrzyk, Hydrothermal co-liquefaction of microalgae, wood, and sugar beet pulp, Biomass Convers. Biorefin. 7 (4) (2017) 445-454. [60] H. Feng, B. Zhang, Z.X. He, S. Wang, O. Salih, Q. Wang, Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil, Energy 155 (2018) 1093-1101. [61] X.Z. Yuan, H.T. Cao, H. Li, G.M. Zeng, J.Y. Tong, L.H. Wang, Quantitative and qualitative analysis of products formed during co-liquefaction of biomass and synthetic polymer mixtures in sub- and supercritical water, Fuel Process. Technol. 90 (3) (2009) 428-434. [LinkOut]. [62] J. Yang, Q. Sophia He, L.X. Yang, A review on hydrothermal co-liquefaction of biomass, Appl. Energy 250 (2019) 926-945. [63] X.Y. Wu, J.M. Liang, Y.L. Wu, H.S. Hu, S.B. Huang, K.J. Wu, Co-liquefaction of microalgae and polypropylene in sub-/super-critical water, RSC Adv. 7 (23) (2017) 13768-13776. [64] L. Yang, Q.S. He, P. Havard, K. Corscadden, C.C. Xu, X. Wang, Co-liquefaction of spent coffee grounds and lignocellulosic feedstocks, Bioresour. Technol. 237 (2017) 108-121. [65] S. Amin, M.K. Khandaker, J. Jannat, F. Khan, S.Z. Rahman, Cooperative environmental governance in urban South Asia: implications for municipal waste management and waste-to-energy, Environ. Sci. Pollut. Res. 30 (26) (2023) 69550-69563. [66] A.A. Peterson, F. Vogel, R.P. Lachance, M. Froling, M.J. Antal Jr, J.W. Tester, Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies, Energy Environ. Sci. 1 (1) (2008) 32. [67] A.B. Ross, P. Biller, M.L. Kubacki, H. Li, A. Lea-Langton, J.M. Jones, Hydrothermal processing of microalgae using alkali and organic acids, Fuel 89 (9) (2010) 2234-2243. [68] L. Nazari, Z.S. Yuan, S. Souzanchi, M.B. Ray, C.C. Xu, Hydrothermal liquefaction of woody biomass in hot-compressed water: catalyst screening and comprehensive characterization of bio-crude oils, Fuel 162 (2015) 74-83. [69] B. de Caprariis, M.P. Bracciale, I. Bavasso, G. Chen, M. Damizia, V. Genova, F. Marra, L. Paglia, G. Pulci, M. Scarsella, L. Tai, P. De Filippis, Unsupported Ni metal catalyst in hydrothermal liquefaction of oak wood: effect of catalyst surface modification, Sci. Total Environ. 709 (2020) 136215. [70] B.J. Zhao, H.Y. Li, H.Y. Wang, Y.L. Hu, J.H. Gao, G.B. Zhao, M.B. Ray, C.C. Xu, Synergistic effects of metallic Fe and other homogeneous/heterogeneous catalysts in hydrothermal liquefaction of woody biomass, Renew. Energy 176 (2021) 543-554. [71] Q.S. Lin, Y. Chen, Y. Tang, K.J. Wu, M.D. Yang, H.S. Hu, Y.L. Wu, Catalytic hydrothermal liquefaction of D.tertiolecta over multifunctional mesoporous silica-based catalysts with high stability, Microporous Mesoporous Mater. 250 (2017) 120-127. [72] S. Leng, L. Leng, L. Chen, J. Chen, J. Chen, W. Zhou, The effect of aqueous phase recirculation on hydrothermal liquefaction/carbonization of biomass: a review, Bioresour. Technol. 318 (2020) 124081. [73] H.O. LeClerc, R. Atwi, S.F. Niles, A.M. McKenna, M.T. Timko, R.H. West, A.R. Teixeira, Elucidating the role of reactive nitrogen intermediates in hetero-cyclization during hydrothermal liquefaction of food waste, Green Chem. 24 (13) (2022) 5125-5141. [74] Z. Cui, J.M. Greene, F. Cheng, J.C. Quinn, U. Jena, C.E. Brewer, Co-hydrothermal liquefaction of wastewater-grown algae and crude glycerol: a novel strategy of bio-crude oil-aqueous separation and techno-economic analysis for bio-crude oil recovery and upgrading, Algal Res. 51 (2020) 102077. [75] P. Biller, B.K. Sharma, B. Kunwar, A.B. Ross, Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae, Fuel 159 (2015) 197-205. [76] H.G. Li, Z.D. Liu, M. Wang, J.W. Lu, T. Bultinck, Y.X. Wang, X.F. Wang, Y.H. Zhang, H.F. Lu, N. Duan, B.M. Li, D.M. Zhang, T.L. Dong, Hydrothermal conversion of anaerobic wastewater fed microalgae: effects of reaction temperature on products distribution and biocrude properties, IET Renew. Power Gener. 13 (12) (2019) 2215-2220. [77] T.H. Seehar, S.S. Toor, A.A. Shah, T.H. Pedersen, L.A. Rosendahl, Biocrude production from wheat straw at sub and supercritical hydrothermal liquefaction, Energies 13 (12) (2020) 3114. [78] J. Arun, K.P. Gopinath, S.S. Vigneshwar, A. Swetha, Sustainable and eco-friendly approach for phosphorus recovery from wastewater by hydrothermally carbonized microalgae: study on spent bio-char as fertilizer, J. Water Process. Eng. 38 (2020) 101567. [79] K.P.R. Dandamudi, T. Murdock, P.J. Lammers, S.G. Deng, E.H. Fini, Production of functionalized carbon from synergistic hydrothermal liquefaction of microalgae and swine manure, Resour. Conserv. Recycl. 170 (2021) 105564. [80] J.O. Ighalo, S. Rangabhashiyam, K. Dulta, C.T. Umeh, K.O. Iwuozor, C.O. Aniagor, S.O. Eshiemogie, F.U. Iwuchukwu, C.A. Igwegbe, Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants, Chem. Eng. Res. Des. 184 (2022) 419-456. [81] N. Cheng, B. Wang, P. Wu, X. Lee, Y. Xing, M. Chen, B. Gao, Adsorption of emerging contaminants from water and wastewater by modified biochar: a review, Environ. Pollut. Barking Essex 273 (2021) 116448. [82] Y. Dai, N. Zhang, C. Xing, Q. Cui, Q. Sun, The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review, Chemosphere 223 (2019) 12-27. |