[1] Bai Y, Xiang S, Cheng F, J. Zhao. A dynamic-inner LSTM prediction method for key alarm variables forecasting in chemical process, Chin. J. Chem. Eng. 55 (2023) 266-276. [2] R.S. Qin, J.S. Zhao, Adaptive multiscale convolutional neural network model for chemical process fault diagnosis, Chin. J. Chem. Eng. 50 (2022) 398-411. [3] X. Peng, Y. Tang, W.L. Du, F. Qian, Performance monitoring of non-Gaussian chemical processes with modes-switching using globality-locality preserving projection, Front. Chem. Sci. Eng. 11 (3) (2017) 429-439. [4] S.Y. Xiang, Y.M. Bai, J.S. Zhao, Medium-term prediction of key chemical process parameter trend with small data, Chem. Eng. Sci. 249 (2022) 117361. [5] L. Ming, J.S. Zhao, Feature selection for chemical process fault diagnosis by artificial immune systems, Chin. J. Chem. Eng. 26 (8) (2018) 1599-1604. [6] H. Meng, X. An, D. Li, S. Zhao, E. Zio, X. Liu, J.Xing, A STAMP-Game model for accident analysis in oil and gas industry, Petrol. Sci. 21(3)(2023) 2154-2167. [7] X.Q. Gao, F. Yang, C. Shang, D.X. Huang, A review of control loop monitoring and diagnosis: Prospects of controller maintenance in big data era, Chin. J. Chem. Eng. 24 (8) (2016) 952-962. [8] X. Liu, C. Wang, Z. Yin, X. An, H. Meng. Risk-informed multi-objective decision-making of emergency schemes optimization, Reliab. Eng. Syst. Safe. 245 (2024) 109979. [9] X.F. Yuan, Y.L. Wang, C.H. Yang, W.H. Gui, L.J. Ye, Probabilistic density-based regression model for soft sensing of nonlinear industrial processes, J. Process. Contr. 57 (2017) 15-25. [10] Y. Liu,.Z Xu, J. Zhao, C. Song, Z. Shao. Multi-scale adaptive multivariate state estimation fault detection enhancement for time-varying industrial system based on multi-output Gaussian process autoregression, Comput. Ind. Eng. 183 (2023) 109502. [11] K. Talordphop, S. Sukparungsee, Y. Areepong, New modified exponentially weighted moving average-moving average control chart for process monitoring, Connect. Sci. 34 (1) (2022) 1981-1998. [12] U. Imtiaz, S.S. Jamuar, J.N. Sahu, P.B. Ganesan. Bioreactor profile control by a nonlinear auto regressive moving average neuro and two degree of freedom PID controllers, J. Process. Contr. 24 (11) (2014) 1761-1777. [13] H. Liu, H.Q. Tian, Y.F. Li, An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system, J. Wind. Eng. Ind. Aerodyn. 141 (2015) 27-38. [14] O. Renaud, J.L. Starck, F. Murtagh, Wavelet-based combined signal filtering and prediction, IEEE Trans. Syst. Man Cybern. B Cybern. 35 (6) (2005) 1241-1251. [15] J.L. Wang, X.Y. Feng, L.Q. Zhao, T. Yu, Unscented transformation based robust Kalman filter and its applications in fermentation process, Chin. J. Chem. Eng. 18 (3) (2010) 412-418. [16] K.C. Wang, J. Zhang, D.X. Huang, Online temperature estimation of Shell coal gasification process based on extended Kalman filter, Chin. J. Chem. Eng. 47 (2022) 134-144. [17] A.M. Benkouider, R. Kessas, A. Yahiaoui, J.C. Buvat, S. Guella, A hybrid approach to faults detection and diagnosis in batch and semi-batch reactors by using EKF and neural network classifier, J. Loss Prev. Process. Ind. 25 (4) (2012) 694-702. [18] A.V. Shenoy, J. Prakash, V. Prasad, S.L. Shah, K.B. McAuley, Practical issues in state estimation using particle filters: Case studies with polymer reactors, J. Process. Contr. 23 (2) (2013) 120-131. [19] I. Derbal, N. Bourahla, A. Mebarki, R. Bahar, Neural network-based prediction of ground time history responses, Eur. J. Environ. Civ. En. 24 (1) (2020) 123-140. [20] F. Qian, L.L. Tao, W.Z. Sun, W.L. Du, Development of a free radical kinetic model for industrial oxidation of p-xylene based on artificial neural network and adaptive immune genetic algorithm, Ind. Eng. Chem. Res. 51 (8) (2012) 3229-3237. [21] H. Wu, J.S. Zhao, An intelligent vision-based approach for helmet identification for work safety, Comput. Ind. 100 (2018) 267-277. [22] T. Ye, M. Dong, J. Long, Y. Zheng, Y. Liang, J. Lu, Multi-objective modeling of boiler combustion based on feature fusion and Bayesian optimization, Comput. Chem. Eng. 165 (2022) 107913. [23] T. Gu, Z. Wang, Z. Fang, Z. Zhu, H. Yang, D. Li, W. Du, Multilabel convolutional network with feature denoising and details supplement, IEEE. T. Neur. Net. Lear. 34 (11) (2023) 8349-8361. [24] J.Q. Zheng, L. Zhao, W.L. Du, Hybrid model of a cement rotary kiln using an improved attention-based recurrent neural network, ISA Trans. 129 (Pt B) (2022) 631-643. [25] H.X. Meng, M.Y. Geng, T. Han, Long short-term memory network with Bayesian optimization for health prognostics of lithium-ion batteries based on partial incremental capacity analysis, Reliab. Eng. Syst. Saf. 236 (2023) 109288. [26] B. Lindemann, T. Muller, H. Vietz, N. Jazdi, M. Weyrich, A survey on long short-term memory networks for time series prediction, Procedia. Cirp. 99 (2021) 650-655. [27] Y. Li, H. Cao, X. Wang, Z. Yang, N. Li, W. Shen, A new Correlation-Similarity Conjoint Algorithm for developing Encoder-Decoder based deep learning multi-step prediction model of chemical process, Chem. Eng. Sci. 288 (2024) 119748. [28] Q. Wang, J. Han, F. Chen, S. Hu, C. Yun, Z. Dou, T. Yan, G. Yang, Modeling risk characterization networks for chemical processes based on multi-variate data, Energy. 293 (2024) 130689. [29] Q. Zhang, M.Z. Li, Y. Deng, A new structure entropy of complex networks based on nonextensive statistical mechanics, Int. J. Mod. Phys. C 27 (10) (2016) 1650118. [30] H. Wu, J.S. Zhao, Self-adaptive deep learning for multimode process monitoring, Comput. Chem. Eng. 141 (2020) 107024. [31] D. Li, C.H. Yang, Y.G. Li, A multi-subsystem collaborative Bi-LSTM-based adaptive soft sensor for global prediction of ammonia-nitrogen concentration in wastewater treatment processes, Water Res. 254 (2024) 121347. [32] S.Y. Zhang, T. Qiu, Semi-supervised LSTM ladder autoencoder for chemical process fault diagnosis and localization, Chem. Eng. Sci. 251 (2022) 117467. [33] S. Xiong, L. Zhou, Y. Dai, X. Ji, Attention-based long short-term memory fully convolutional network for chemical process fault diagnosis, Chin. J. Chem. Eng. 56 (2023) 1-14. [34] J. Luo, Z. Jin, H. Jin, Q. Li, X. Ji, Y. Dai, Causal temporal graph attention network for fault diagnosis of chemical processes, Chin. J. Chem. Eng. 70 (2024) 20-32. [35] Q. Wang, J. Han, F. Chen, F. Wang, Z. Dou, G. Yang, A modeling framework of dynamic risk monitoring for chemical processes based on complex networks, IEEE Access, 12 (2024) 14194-14210. [36] I. Omelchenko, Keeping the power grid stable, Nat. Comput. Sci. 2 (2022) 621. [37] Y. Yan, S. Zhang, J. Tang, X. Wang, Understanding characteristics in multivariate traffic flow time series from complex network structure, Physica. A. 477 (2017) 149-160. [38] F. Ghazipour, N. Mahjouri, A multi-model data fusion methodology for seasonal drought forecasting under uncertainty: Application of Bayesian maximum entropy, J. Environ. Manage. 304 (2022) 114245. [39] Y. Han, N. Ding, Z. Geng, Z. Wang, C. Chu, An optimized long short-term memory network based fault diagnosis model for chemical processes, J. Process. Contr. 92 (2020) 161-168. [40] K.S. Tan, K.M. Lim, C.P. Lee, L.C. Kwek, Bidirectional long short-term memory with temporal dense sampling for human action recognition, Expert. Syst. Appl. 210 (2022) 118484. [41] Z.Q. Cui, C.H. Zhao, Dual-stage attention based spatio-temporal sequence learning for multi-step traffic prediction, IFAC-PapersOnLine 53 (2) (2020) 17035-17040. [42] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, Complex networks: Structure and dynamics, Physics reports, 424 (4-5) (2006) 175-308. [43] D. Li, L. Sun, X. Xu, Z. Wang, J. Zhang, W. Du, BLSTM and CNN stacking architecture for speech emotion recognition, Neural. Process. Lett. 53 (6) (2021) 4097-4115. [44] G. Soderlind, Time-step selection algorithms: Adaptivity, control, and signal processing, Appl. Numer. Math. 56 (3-4) (2006) 488-502. [45] W.P. Porter, Y.H. Xing, B.R. von Ohlen, J. Han, C.L. Wang, A deep learning approach to selecting representative time steps for time-varying multivariate data, 2019 IEEE Visualization Conference (VIS). October 20-25, 2019, Vancouver, BC, Canada. IEEE, (2019) 1-5. [46] D.S.K. Karunasingha, Root mean square error or mean absolute error? Use their ratio as well, Inf. Sci. 585 (2022) 609-629. [47] Y.M. Bai, J.S. Zhao, A novel transformer-based multi-variable multi-step prediction method for chemical process fault prognosis, Process. Saf. Environ. Prot. 169 (2023) 937-947. [48] X. Peng, Y. Tang, W. Du, F. Qian, Multimode process monitoring and fault detection: A sparse modeling and dictionary learning method, IEEE T. Ind. Electron. 64 (6) (2017) 4866-4875. [49] H. Wu, J.S. Zhao, Fault detection and diagnosis based on transfer learning for multimode chemical processes, Comput. Chem. Eng. 135 (2020) 106731. [50] Kumari P, Lee D, Wang Q, et al. Root cause analysis of key process variable deviation for rare events in the chemical process industry, Ind. Eng. Chem. Res. 59 (23) (2020) 10987-10999. [51] P. Kumari, B. Bhadriraju, Q.S. Wang, J.S.I. Kwon, A modified Bayesian network to handle cyclic loops in root cause diagnosis of process faults in the chemical process industry, J. Process. Contr. 110 (2022) 84-98. |